A general measure extension procedure

Author:
Alan Sultan

Journal:
Proc. Amer. Math. Soc. **69** (1978), 37-45

MSC:
Primary 28A10

MathSciNet review:
0466469

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a very general and flexible way of producing measure extensions. We obtain as corollaries many well-known and important measure extension and integral representation theorems as well as the main theorems of several recent papers.

**[1]**A. D. Alexandroff,*Additive set-functions in abstract spaces*, Rec. Math. [Mat. Sbornik] N. S.**8 (50)**(1940), 307–348 (English, with Russian summary). MR**0004078****[2]**A. D. Alexandroff,*Additive set-functions in abstract spaces*, Rec. Math. [Mat. Sbornik] N.S.**9 (51)**(1941), 563–628 (English, with Russian summary). MR**0005785****[3]**Richard A. Alò and Harvey L. Shapiro,*Normal topological spaces*, Cambridge University Press, New York-London, 1974. Cambridge Tracts in Mathematics, No. 65. MR**0390985****[4]**George Bachman and Alan Sultan,*Extensions of regular lattice measures with topological applications*, J. Math. Anal. Appl.**57**(1977), no. 3, 539–559. MR**0427570****[5]**George Bachman and Alan Sultan,*Regular lattice measures: mappings and spaces*, Pacific J. Math.**67**(1976), no. 2, 291–321. MR**0507538****[6]**-,*Measure theoretic techniques in topology and mappings of replete and measure replete spaces*(to appear).**[7]**Sterling K. Berberian,*Measure and integration*, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1965. MR**0183839****[8]**S. K. Berberian,*On the extension of Borel measures*, Proc. Amer. Math. Soc.**16**(1965), 415–418. MR**0176022**, 10.1090/S0002-9939-1965-0176022-4**[9]**Jack Hardy and H. Elton Lacey,*Extensions of regular Borel measures*, Pacific J. Math.**24**(1968), 277–282. MR**0222239****[10]**R. B. Kirk,*Algebras of bounded real-valued functions. I*, Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math.**34**(1972), 443–451. MR**0320725****[11]**R. B. Kirk and J. A. Crenshaw,*A generalized topological measure theory*, Trans. Amer. Math. Soc.**207**(1975), 189–217. MR**0369648**, 10.1090/S0002-9947-1975-0369648-7**[12]**Jan Mařík,*The Baire and Borel measure*, Czechoslovak Math. J.**7(82)**(1957), 248–253 (English, with Russian summary). MR**0088532****[13]**M. A. Naĭmark,*Normed rings*, Reprinting of the revised English edition, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the first Russian edition by Leo F. Boron. MR**0355601****[14]**A. Sultan,*General rings of functions*, J. Austral. Math. Soc. Ser. A**20**(1975), no. 3, 359–365. MR**0388348****[15]**Alan Sultan,*Measure, compactification and representation*, Canad. J. Math.**30**(1978), no. 1, 54–65. MR**0464168****[16]**Flemming Topsøe,*Topology and measure*, Lecture Notes in Mathematics, Vol. 133, Springer-Verlag, Berlin-New York, 1970. MR**0422560****[17]**V. Varadarajan,*Measures on topological spaces*, Amer. Math. Soc. Transl. (2)**48**(1965), 161-228.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A10

Retrieve articles in all journals with MSC: 28A10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0466469-X

Keywords:
Measure,
extension,
paving,
ring,
linear functional

Article copyright:
© Copyright 1978
American Mathematical Society