Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A general measure extension procedure


Author: Alan Sultan
Journal: Proc. Amer. Math. Soc. 69 (1978), 37-45
MSC: Primary 28A10
DOI: https://doi.org/10.1090/S0002-9939-1978-0466469-X
MathSciNet review: 0466469
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a very general and flexible way of producing measure extensions. We obtain as corollaries many well-known and important measure extension and integral representation theorems as well as the main theorems of several recent papers.


References [Enhancements On Off] (What's this?)

  • [1] A. D. Alexandroff, Additive set functions in abstract spaces, Mat. Sb. (N.S.) 8 (50)(1940), 307-348. MR 0004078 (2:315c)
  • [2] -, Additive set functions in abstract spaces, Mat. Sb. (N.S.) 8 (50)(1941), 563-628. MR 0005785 (3:207b)
  • [3] R. Alo and H. L. Shapiro, Normal topological spaces, Cambridge Univ. Press, Cambridge, Mass., 1974. MR 0390985 (52:11808)
  • [4] G. Bachman and A. Sultan, Extensions of regular lattice measures with topological applications, J. Math. Anal. Appl. 57 (1977), 539-559. MR 0427570 (55:601)
  • [5] -, Regular lattice measures: mappings and spaces, Pacific J. Math. 67 (1976), 291-321. MR 0507538 (58:22476)
  • [6] -, Measure theoretic techniques in topology and mappings of replete and measure replete spaces (to appear).
  • [7] S. Berberian, Measure and integration, Chelsea, New York, 1965. MR 0183839 (32:1315)
  • [8] -, On the extension of Borel measures, Proc. Amer. Math. Soc. 16 (1965), 415-418. MR 0176022 (31:298)
  • [9] J. Hardy and H. Lacey, Extensions of regular Borel measures, Pacific J. Math. 24 (1968), 277-282. MR 0222239 (36:5291)
  • [10] R. B. Kirk, Algebras of bounded real valued functions. I, II, Indag. Math. 31 (1969), 443-462. MR 0320725 (47:9260a)
  • [11] R. B. Kirk and J. A. Crenshaw, A generalized topological measure theory, Trans. Amer. Math. Soc. 207 (1975), 189-217. MR 0369648 (51:5880)
  • [12] J. Marik, The Baire and Borel measure, Czechoslovak Math. J. 7 (1957), 248-253. MR 0088532 (19:535f)
  • [13] M. Naimark, Normed rings, Noordhoff, Groningen, 1960. MR 0355601 (50:8075)
  • [14] A. Sultan, General rings of functions, J. Austral. Math. Soc. 20 (1975), 359-365. MR 0388348 (52:9185)
  • [15] -, Measure compactification and representation, Canad. J. Math. (to appear). MR 0464168 (57:4103)
  • [16] F. Topsoe, Topology and measure, Lecture Notes in Math., vol. 133, Springer-Verlag, Berlin and New York, 1970. MR 0422560 (54:10546)
  • [17] V. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-228.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A10

Retrieve articles in all journals with MSC: 28A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0466469-X
Keywords: Measure, extension, paving, ring, linear functional
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society