COUNTING EIGENVALUES FOR AUTOMORPHISMS OF RIEMANN SURFACES

JOHN LAWRENCE1 AND FRANK ZORZITTO2

Abstract. Let n be a prime, A, B, C disjoint sets, $f: \mathbb{Z}^n \to A \cup B \cup C$ be such that $f(x) \in A$ iff $f(-x) \in C$ and $f(x+y) \in C$ whenever $f(x), f(y) \in A$. Then the cardinality of $f^{-1}[B]$ tends to infinity with n. Using this, certain eigenvalues for automorphisms of the Riemann surfaces defined by the equation $y^n = x^{m_1}(x-1)^{m_2}(x-z)^{m_3}$ are counted.

1. The geometric setting. For every complex number $z \neq 0, 1$ the equation

$$y^n = x^{m_1}(x-1)^{m_2}(x-z)^{m_3},$$

where n is a prime number, m_1, m_2, m_3 are positive integers less than n, $n \mid m_1 + m_2 + m_3$ and x, y are complex variables, defines a Riemann surface $R(z)$ of genus $n - 1$. Such Riemann surfaces $R(z)$ and their connection to the hypergeometric differential equation

$$z(z-1)\frac{d^2w}{dz^2} + ((\alpha + \beta + 1)z - \gamma)\frac{dw}{dz} + \alpha \beta w = 0$$

have been studied in [1] by A. Kuribayashi.

The vector space $V(z)$ of differentials of the first kind on $R(z)$ has dimension equal to the genus $n - 1$. In [1] it is proved that the differentials of the form

$$\omega = x^{k_1}(x-1)^{k_2}(x-z)^{k_3}y^{-l}dx,$$

where l, k_1, k_2, k_3 are integers satisfying the conditions

$$\begin{align*}
(a) & \quad 0 < l < n, 0 < k_1, k_2, k_3 < n, \\
(b) & \quad m_i l < k_i n + n, i = 1, 2, 3, \\
(c) & \quad (m_1 + m_2 + m_3)l > (k_1 + k_2 + k_3)n + n,
\end{align*}$$

span $V(z)$.

Any automorphism σ on $R(z)$ induces a linear transformation S on $V(z)$ according to $S: f dg \mapsto (f \circ \sigma)d(g \circ \sigma)$ for every differential, $\omega = fdg$, of the first kind on $R(z)$. In particular, for ζ a primitive nth root of unity, the automorphism σ, that maps every (x, y) on $R(z)$ to $(x, \zeta y)$, generates all
automorphisms which leave x fixed. The differentials ω given by (3) are eigenvectors for the linear operator S on $V(z)$ induced by the automorphism $\sigma: (x, y) \mapsto (x, zy)$. In fact ω goes to $\xi^{n-1}\omega$. The operator S is diagonalizable by simply taking a base for $V(z)$ from the differentials given by (3) and (4). For a given integer $l = 1, \ldots, n-1$, the number ξ^{n-l} is an eigenvalue of S whenever there exist integers k_1, k_2, k_3 satisfying the inequalities (4). Indeed, in that case the differential $\omega = x^{k_1}(x-1)^{k_2}(x-z)^{k_3}dy^{n-l}dx$ is an eigenvector of S.

The question posed by Kuribayashi, which we wish to discuss is: “For how many l’s between 0 and n are both ξ^{n-l} and ξ^{l} eigenvalues of S?”

THEOREM 1. Let all notations be as above. The number of integers $l = 1, \ldots, n-1$ for which both ξ^{l} and ξ^{n-l} are eigenvalues of S, always exceeds 0 and tends to infinity as n tends to infinity.

2. **A counting problem.** To prove Theorem 1 the following estimate will be used.

For any positive integer n let $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ be the group of integers modulo n. Let A, B, C be three-disjoint sets, and let $f: \mathbb{Z}_n \to A \cup B \cup C$ be a function satisfying:

\begin{align}
(a) f(1) & \in A, \\
(b) f(\bar{x}) & \in A \text{ if and only if } f(-\bar{x}) \in C, \\
(c) f(x), f(y) & \in A \text{ implies } f(x+y) \notin C.
\end{align}

Under these conditions f must map into B quite often.

THEOREM 2. If N is the cardinality of $f^{-1}[B]$, then $N(4N + 3) \geq n$. Furthermore, if n is a prime, then merely conditions (5),(b),(c) will ensure this inequality.

Proof. Let $F: \mathbb{Z} \to A \cup B \cup C$ be given by $F(x) = f(\bar{x})$, for any $x \in \mathbb{Z}$. Any set $I = \{k + 1, k + 2, \ldots, k + r\}$ of consecutive integers such that $F[I] \subseteq A \cup B$ will be called a chain of length r through $A \cup B$. Let r be the largest integer for which there exists a chain $I = \{k + 1, k + 2, \ldots, k + r\}$ of length r through $A \cup B$. Obviously, from condition (5),(a),(b) and the nature of F, $r < n$.

We shall prove $r \leq 4N + 1$. The interval $(2k + r/2, 2k + 3r/2 + 1]$ contains more than r integers. By the maximality of r there is an integer m in this interval such that $F(m) \in C$. For an integer $m \in (2k + r/2, 2k + 3r/2 + 1]$ the number of pairs of integers (i, j), such that $i, j = 1, \ldots, r$ and $2k + i + j = m$, is not less than $(r - 1)/2$. Thus there are at least $(r - 1)/2$ pairs (i, j) such that $k + i, k + j \in I$ and $F(k + i + k + j) = F(m) \in C$. Condition (5),(c) then implies that for each such pair (i, j), either $F(k + i) \in B$ or $F(k + j) \in B$. A given integer $h = 1, \ldots, r$ can appear at most twice as a component in the pairs (i, j) such that $2k + i + j = m$. Thus there are not less than $(r - 1)/4$ integers $h = 1, \ldots, r$ such that $F(k + h) \in B$. That is, $(r - 1)/4 \leq N$, or $r \leq 4N + 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
If \(J = \{k + 1, \ldots, k + s\} \) is now any chain through \(A \) (instead of \(A \cup B \)) of length \(s \), then \(J + J = \{2k + 2, \ldots, 2k + 2s\} \) is a chain of length \(2s - 1 \) through \(A \cup B \), because of condition (5),(c). Hence \(2s - 1 < 4N + 1 \), or \(s < 2N + 1 \).

Let \(J_1, J_2, \ldots, J_t \) be the successive chains through \(A \), that are included in the interval \([0, n - 1]\). Their union has cardinality equal to that of \(f^{-1}[A] \). By (5),(c) this cardinality equals that of \(f^{-1}[C] \), which then must be \((n - N)/2\). The bound of \(2N + 1 \) on the length of each \(J_i \) then implies that \(t(2N + 1) > (n - N)/2 \).

If \(f \) is the last element of any chain through \(A \), then \(F(l + 1) \in B \), due to (5),(c) and the fact that \(F(l), F(1) \in A \). Thus in each gap between the chains \(J_1, \ldots, J_t \) there is an integer \(x \) such that \(F(x) \in B \). These \(x \)'s are distinct modulo \(n \). Also note \(F(0) \in B \), from (5),(b). Therefore, \(t < N \). From the earlier inequality we deduce \(N(2N + 1) > (n - N)/2 \), which reduces to \(N(4N + 3) > n \).

The case where \(n \) is prime but (5),(a) is not assumed reduces as follows to the case where (5),(a) is assumed. If \(f(\bar{x}) \in B \) for all \(\bar{x} \in \mathbb{Z}_n \), then \(N(4N + 3) > n \) trivially. So we can suppose in light of (5),(b) that \(f(\bar{l}) \in A \) for some nonzero \(\bar{l} \in \mathbb{Z}_n \). Let \(f' : \mathbb{Z}_n \to A \cup B \cup C \) be defined by \(f'(\bar{x}) = f(\bar{x}) \bar{l} \). The function \(f' \) still enjoys properties (5),(b),(c), plus \(f'(1) \in A \). Also \(f^{-1}[B] = [lf^{-1}[B] \bar{l}] \). Since the nonzero elements of \(\mathbb{Z}_n \) form a group, \(f^{-1}[B] \bar{l} \) has the same cardinality \(N \), as \(f^{-1}[B] \). It follows that, because \(f' \) satisfies (5),(a),(b),(c), \(N(4N + 3) > n \).

3. Application. We return to the situation and notations of Theorem 1. For any integer \(x \) and each of the \(m_1, m_2, m_3 \) let \(\overline{m_i}x \) denote the integer in \(\{1, 2, \ldots, n\} \) that is congruent to \(m_i x \) modulo \(n \). Let \(F(x) = m_1 x + m_2 x + m_3 x \), where addition is the usual addition (not modulo \(n \)) of integers.

The function \(F \) has the following properties.

\[
\begin{align*}
(a) \quad 3 < F(x) < 3n, \\
(b) \quad n \nmid F(x) \text{ if and only if } \overline{F(x)} = x, \\
(c) \quad F(x) = F(y) \text{ if and only if } \overline{F(x)} \overline{F(y)} = x - y, \\
(d) \quad F(x) < n \text{ if and only if } \overline{F(n - x)} > 2n, \\
(e) \quad F(x), F(y) < n \text{ implies } \overline{F(x + y)} < 2n.
\end{align*}
\]

Proposition 3. For \(l = 1, \ldots, n - 1 \) the number \(\xi^{n-l} \) is an eigenvalue of \(S \) if and only if \(F(l) > n \).

Proof. That \(\xi^{n-l} \) is an eigenvalue of \(S \) is tantamount to the existence of a solution \(k_1, k_2, k_3 \) to (4).

Suppose \(F(l) > n \). For each \(i = 1, 2, 3 \), let \(k_i \) be the number of times \(n \) divides \(m_i l \). Clearly \(0 < k_i < n \), and the division formula

\[
m_i l = k_i n + m_i \overline{l}, \quad 0 < m_i \overline{l} < n,
\]

yields a solution of (4),(a),(b). Adding equations (7) over \(i = 1, 2, 3 \) provides...
where \(\sum m_i \) and \(\sum k_i \) represent the sums of the series, \(n \) is a constant, \(m_i \) and \(k_i \) are variables, and \(F(l) \) is a function of \(l \). This expression thereby solving (4),(c) as well.

Conversely, suppose inequalities (4) are solved by some \(k_1, k_2, k_3 \). Since (4),(c) will remain satisfied for any lesser \(k_i \)'s, it can be assumed that for each \(i = 1, 2, 3 \), \(k_i \) is also the least integer satisfying (4),(a),(b). Thus each \(k_i \) is precisely the number of times \(n \) divides \(m_i \), and (7) holds for each \(k_i \). Adding up the equations (7) over \(i = 1, 2, 3 \), and use of (4),(c) then leads to \(F(l) > n \).

Corollary 4. For any \(l = 1, \ldots, n - 1 \) either \(\zeta^l \) or \(\zeta^{n-l} \) must be an eigenvalue of \(S \). Both \(\zeta^l \) and \(\zeta^{n-l} \) are eigenvalues of \(S \) if and only if \(n < F(l) < 2n \).

This follows easily from (6),(d).

Proof of Theorem 1. By Corollary 4 it is enough to prove that the number, \(M \), of \(l \)'s in \(\{1, \ldots, n-1\} \), for which \(n < F(l) < 2n \), tends to infinity as \(n \) tends to infinity. We shall prove

\[
(M + 1)(4(M + 1) + 3) > n.
\]

Let \(A = \{0, 1, \ldots, n - 1\} \), \(B = \{n, n + 1, \ldots, 2n - 1\} \), \(C = \{2n, \ldots, 2n - 1\} \). The function \(f: \mathbb{Z}_n \to A \cup B \cup C \) given by \(f(x) = F(x) \) when \(x \neq 0 \) and \(f(0) = n \) is well defined because of (6),(c). For \(l = 1, \ldots, n - 1 \), \(n < F(l) < 2n \) exactly when \(f(l) \in B \). On noting that \(f(0) \in B \), we see that \(M + 1 \) equals the cardinality of \(f^{-1}[B] \). Also properties (5),(b),(c) follow for \(f \) from properties (6),(d),(e) for \(F \), and \(n \) is prime. Theorem 2 then implies that \((M + 1)(4(M + 1) + 3) > n \).

The statement in Theorem 1, that there always exists an \(l \) in \(\{1, \ldots, n - 1\} \) making \(\zeta^{n-l} \) and \(\zeta^l \) eigenvalues of the operator \(S \), follows from (8) for \(n > 11 \). In that case \(M \) must be at least 1. As for the primes 2, 3, 5, 7 it is easy to check that the statement is still valid.

A conjecture for a sharper inequality to replace (8) is \(3M > n \).

References

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada