Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal connected expansions of the reals


Authors: J. A. Guthrie, H. E. Stone and M. L. Wage
Journal: Proc. Amer. Math. Soc. 69 (1978), 159-165
MSC: Primary 54A10
DOI: https://doi.org/10.1090/S0002-9939-1978-0467646-4
MathSciNet review: 0467646
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The question of whether there exist nontrivial maximal connected Hausdorff spaces is settled in the affirmative by showing that there is a maximal connected topology for the reals which is finer than the Euclidean topology.


References [Enhancements On Off] (What's this?)

  • [1] D. R. Anderson, On connected irresolvable Hausdorff spaces, Proc. Amer. Math. Soc. 16 (1965), 463-466. MR 31 #2700. MR 0178443 (31:2700)
  • [2] I. Baggs, A connected Hausdorff space which is not contained in a maximal connected space, Pacific J. Math. 51 (1974), 11-18. MR 0365477 (51:1729)
  • [3] C. J. R. Borges, On extensions of topologies, Canad. J. Math. 19 (1967), 474-487. MR 35 #3621. MR 0212755 (35:3621)
  • [4] N. Bourbaki, Elements of mathematics. General topology, Part 1, Addison-Wesley, Reading, Mass., 1966. MR 34 # 5044a. MR 0205210 (34:5044a)
  • [5] L. Friedler, Open, connected functions, Canad. Math. Bull. 16 (1973), 57-60. MR 0341382 (49:6133)
  • [6] J. A. Guthrie, D. F. Reynolds and H. E. Stone, Connected expansions of topologies, Bull. Austral. Math. Soc. 9 (1973), 259-265. MR 48 #7201. MR 0328859 (48:7201)
  • [7] J. A. Guthrie and H. E. Stone, Spaces whose connected expansions preserve connected subsets, Fund. Math. 80 (1973), 91-100. MR 48 #9653. MR 0331319 (48:9653)
  • [8] P. C. Hammer and W. E. Singletary, Connectedness-equivalent spaces on the line, Rend. Circ. Mat. Palermo 17 (1968), 245-355. MR 43 #8054. MR 0282342 (43:8054)
  • [9] M. Katetov, On topological spaces containing no disjoint dense sets, Mat. Sb. 21 (1947), 3-12. MR 9, 98. MR 0021679 (9:98a)
  • [10] M. R. Kirch, A class of spaces in which compact sets are finite, Amer. Math. Montly 76 (1969), 42. MR 38 #3816. MR 0235507 (38:3816)
  • [11] R. E. Larson, Maximal connected topologies: a survey of the problem, Notices Amer. Math. Soc. 23 (1976), A-179.
  • [12] N. Levine, Simple extensions of topologies, Amer. Math. Monthly 71 (1964), 22-25. MR 29 #580. MR 0163277 (29:580)
  • [13] D. F. Reynolds, Preservation of connectedness under extensions of topologies, Kyungpook Math. J. 13 (1973), 217-219. MR 0339069 (49:3832)
  • [14] A. K. Steiner, On the lattice of topologies, General Topology and Its Relation to Modern Analysis and Algebra III, Academia, Prague, 1972, pp. 411-415. MR 0353231 (50:5715)
  • [15] J. P. Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), 700-705. MR 38 #5177. MR 0236884 (38:5177)
  • [16] -, Maximal connected Hausdorff spaces, Pacific J. Math. 57 (1975), 581-583. MR 0410660 (53:14408)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A10

Retrieve articles in all journals with MSC: 54A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0467646-4
Keywords: Maximal connected, expansion of a topology, lattice of topologies
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society