Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Another realcompact, 0-dimensional, non-$ N$-compact space


Author: Samuel Broverman
Journal: Proc. Amer. Math. Soc. 69 (1978), 156-158
MSC: Primary 54D60
DOI: https://doi.org/10.1090/S0002-9939-1978-0467678-6
MathSciNet review: 0467678
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A refinement of the topology of the plane is constructed which is locally compact, locally countable, 0-dimensional, realcompact, but not N-compact.


References [Enhancements On Off] (What's this?)

  • [1] S. Broverman, N-compactness and weak homogeneity, Proc. Amer. Math. Soc. 62 (1977), 173-176. MR 0458369 (56:16572)
  • [2] Kim-Peu Chew, A characterization of N-compact spaces, Proc. Amer. Math. Soc. 26 (1970), 679-682. MR 0267534 (42:2436)
  • [3] R. Engelking and S. Mrowka, On E-compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6 (1958), 429-436. MR 20 #3522. MR 0097042 (20:3522)
  • [4] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 22 #6944. MR 0116199 (22:6994)
  • [5] P. Nyikos, Prabir Roy's space is not N-compact, General Topology and Appl. 3 (1973), 197-210. MR 0324657 (48:3007)
  • [6] P. Roy, Failure of equivalence of dimension concepts for metric spaces, Bull. Amer. Math. Soc. 68 (1962), 609-613. MR 0142102 (25:5495)
  • [7] E. K. van Douwen, A technique for constructing honest locally compact submetrizable examples (preprint).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D60

Retrieve articles in all journals with MSC: 54D60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0467678-6
Keywords: 0-dimensional, realcompact, N-compact, ultrafilter
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society