On the stable cohomotopy of

Author:
Victor Snaith

Journal:
Proc. Amer. Math. Soc. **69** (1978), 174-176

MSC:
Primary 55B20

DOI:
https://doi.org/10.1090/S0002-9939-1978-0467720-2

MathSciNet review:
0467720

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There is a conjecture of G. B. Segal concerning the relation between the Burnside ring of *G* and the stable cohomotopy of *BG*. When this conjecture is shown to be equivalent to the triviality of the group of homotopy classes of into the ``cokernel of *J*".

**[1]**J. F. Adams,*The Kahn-Priddy theorem*, Proc. Cambridge Philos. Soc.**73**(1973), 45-55. MR**0310878 (46:9976)****[2]**M. F. Atiyah and G. B. Segall,*Equivariant K-theory and completion*, J. Differential Geometry**3**(1969), 1-18. MR**0259946 (41:4575)****[3]**A. Dress,*A characterization of solvable groups*, Math. Z.**110**(1969), 213-217. MR**0248239 (40:1491)****[4]**L. Hodgkin and V. P. Snaith,*Y-theory of some more well-known spaces*, Illinois J. Math. (to appear).**[5]**I. Madsen, V. P. Snaith and J. Tornehave,*Homomorphisms of spectra and bundle theories*, Proc. Cambridge Philos. Soc.**81**(1977), 399-430. MR**0494076 (58:13007)****[6]**D. G. Quillen,*The Adams conjecture*, Topology**10**(1971), 67-80. MR**0279804 (43:5525)****[7]**V. P. Snaith,*Dyer-Lashof operations in K-theory*, Lecture Notes in Math., vol. 496, Springer-Verlag, Berlin and New York, 1975, pp. 103-294. MR**0394662 (52:15463)****[8]**D. Sullivan,*Genetics of homotopy theory and the Adams conjecture*, Ann. of Math. (2)**100**(1974), 1-79. MR**0442930 (56:1305)****[9]**H. Toda,*Order of the identity class of a suspension space*, Ann. of Math. (2)**78**(1963), 300-325. MR**0156347 (27:6271)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55B20

Retrieve articles in all journals with MSC: 55B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0467720-2

Article copyright:
© Copyright 1978
American Mathematical Society