Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A commutant of an unbounded operator algebra


Author: Atsushi Inoue
Journal: Proc. Amer. Math. Soc. 69 (1978), 97-102
MSC: Primary 46L15
DOI: https://doi.org/10.1090/S0002-9939-1978-0473863-X
MathSciNet review: 0473863
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A commutant $ {\mathfrak{A}^c}$ and bicommutant $ {\mathfrak{A}^{cc}}$ of an unbounded operator algebra $ \mathfrak{A}$ called a #-algebra are defined. The first purpose of this paper is to investigate whether the bicommutant $ {\mathfrak{A}^{cc}}$ of a #-algebra $ \mathfrak{A}$ is an $ E{W^\char93 }$-algebra, as defined in [6], or not. The second purpose is to investigate the relation between $ {\mathfrak{A}^{cc}}$ and topologies on a #-algebra $ \mathfrak{A}$.


References [Enhancements On Off] (What's this?)

  • [1] R. Arens, The space $ {L^\omega }$ and convex topological rings, Bull. Amer. Math. Soc. 52 (1946), 931-935. MR 0017524 (8:165d)
  • [2] R. M. Brooks, Some algebras of unbounded operators, Math. Nachr. 56 (1973), 47-62. MR 0338795 (49:3559)
  • [3] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, 2é ed., Gauthier-Villars, Paris, 1969.
  • [4] P. G. Dixon, Unbounded operator algebras, Proc. London Math. Soc. (3) 23 (1971), 53-69. MR 0291821 (45:911)
  • [5] N. Dunford and J. T. Schwartz, Linear operators, Vol. II, Interscience, New York, 1963. MR 0188745 (32:6181)
  • [6] A. Inoue, On a class of unbounded operator algebras, Pacific J. Math. 65 (1976), 77-95. MR 0512382 (58:23641a)
  • [7] -, On a class of unbounded operator algebras. II, Pacific J. Math. 66 (1976), 411-431. MR 0512383 (58:23641b)
  • [8] -, On a class of unbounded operator algebras. III, Pacific J. Math. 69 (1977), 105-115. MR 0512384 (58:23641c)
  • [9] -, Unbounded representations of symmetric $ ^ \ast $-algebras, J. Math. Soc. Japan 29 (1977), 219-232. MR 0438136 (55:11055)
  • [10] J. P. Jurzak, Simple facts about algebras of unbounded operators, J. Functional Analysis 21 (1976), 469-482. MR 0399883 (53:3725)
  • [11] G. Lassner, Topological algebras of operators, Rep. Mathematical Phys. 3 (1972), 279-293. MR 0322527 (48:889)
  • [12] I. E. Segal, A noncommutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401-457. MR 0054864 (14:991f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L15

Retrieve articles in all journals with MSC: 46L15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0473863-X
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society