Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On strongly exposing functionals


Author: J. M. Borwein
Journal: Proc. Amer. Math. Soc. 69 (1978), 46-48
MSC: Primary 46B99; Secondary 52A05
DOI: https://doi.org/10.1090/S0002-9939-1978-0493272-7
MathSciNet review: 0493272
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let K be a weakly compact convex set. The recent result of Lau that its strongly exposing functionals form a dense $ {G_\delta }$ is here proved by a modification of Lindenstrauss's proof that K is the closed convex hull of its strongly exposed points.


References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain, Strongly exposed points in weakly compact convex sets in Banach spaces, Proc. Amer. Math. Soc. 58 (1976), 197-200. MR 0415272 (54:3363)
  • [2] J. Diestel, Geometry of Banach spaces-Selected topics, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin and New York, 1975. MR 0461094 (57:1079)
  • [3] Ka-Sing Lau, On strongly exposing functionals, J. Austral. Math. Soc. 21 (Series A) (1976), 362-367. MR 0423049 (54:11033)
  • [4] -, A remark on strongly exposing functionals, Proc. Amer. Math. Soc. 59 (1976), 242-244. MR 0415274 (54:3365)
  • [5] J. Lindenstrauss, On operators which achieve their norm, Israel J. Math. 5 (1967), 145-152.
  • [6] R. R. Phelps, Dentability and extreme points in Banach spaces, J. Functional Analysis 17 (1974), 78-90. MR 0352941 (50:5427)
  • [7] S. L. Trojanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1970/71), 173-180. MR 0306873 (46:5995)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B99, 52A05

Retrieve articles in all journals with MSC: 46B99, 52A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0493272-7
Keywords: Strongly exposing functionals, weakly compact convex sets
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society