ON THE RELATIONS BETWEEN SOME RATE-OF-GROWTH CONDITIONS

T. G. MCLAUGHLIN

Abstract. We discuss the implications and nonimplications between four rate-of-growth properties of sets useful in certain areas of recursion theory; all nonimplications are established within the boolean algebra generated by the recursively enumerable sets.

If S is an infinite set of natural numbers, we denote by p_S that strictly increasing function (the so-called principal function of S) from the set \mathbb{N} of all natural numbers into \mathbb{N} whose range is S. In the present paper, S and T (with or without subscripts) always denote infinite subsets of \mathbb{N}. For any function f, δf denotes the domain of f. Σ^0_0 denotes the class of all recursively enumerable subsets of \mathbb{N}, while Π^0_0 denotes $\{S \mid N - S \in \Sigma^0_0\}$. By a d.r.e. set, we mean one which is the difference of two elements of Σ^0_0. S denotes the Turing degree of S, and \overline{S} denotes the complement of S in \mathbb{N}. Let $\langle \varphi_i \rangle$ be some standard recursive enumeration of the partial recursive functions of one argument. As usual, μ denotes the least number operator.

We wish to catalog the various implications and nonimplications among the universal quantifications of the following four “rate-of-growth” conditions which have been studied in [1], [2], [5], [6], and various other places in the recursion-theoretic literature; in the case of each nonimplication, we shall locate a counterexample within one or another familiar subclass of the $\exists \forall \cap \forall \exists$ level of the arithmetical hierarchy.

\[[D_i(S)] \quad (\exists m)(\forall n > m)[n \in \delta \varphi_i \Rightarrow p_S(n) > \varphi_i(n)]; \]

\[[D^*(S)] \quad (\exists m)(\forall n > m)[p_S(n) \in \delta \varphi_i \Rightarrow p_S(n + 1) > \varphi_i(p_S(n))]; \]

\[[D^{**}(S)] \quad S \subseteq \delta \varphi_i \Rightarrow [D^*(S)]; \]

\[[UH_i(S)] \quad \varphi_i \text{ total} \Rightarrow [D^*(S)]. \]

Let $D(S)$ mean $(\forall i)[D_i(S)]$; similarly for the notations “$D^*(S)$”, “$D^{**}(S)$”, “$UH(S)$”. (We have chosen the notation “UH” since the condition $UH(S)$ has several times been referred to in the literature as uniform hyperimmunity of S; in the other cases, “D” is for domination.)

We begin by stating a result from [1] which is just a bit weaker than one of the facts we shall need:

Received by the editors April 6, 1977.

Key words and phrases. Retraceable, cohesive, Σ^0_1. © American Mathematical Society 1978
Lemma 1 (Degtev). Let M be a maximal Σ^0_1 set. Then $UH(M)$.

(Lemma 1 is also mentioned, but not proved, in [3]. In point of fact, Degtev asserts in [1] that $D^*(M)$ holds; his proof, however, stops just short of showing it, the stopping point being $UH(M)$. In the next lemma, we carry the matter one easy step further.)

Recall that an infinite set $C \subseteq N$ is called cohesive if there is no set $W \in \Sigma^0_1$ such that both $C \cap W$ and $C \cap \overline{W}$ are infinite (so that, in particular, maximal Σ^0_1 sets are just those which have infinite, cohesive complements).

Lemma 2. Let C be a cohesive set such that $C \subseteq \overline{M}$ holds for some maximal element 0^\prime. Then $D^*(C)$.

Proof. It is very easily seen that $(\forall S)(\forall T)((D^*(S) \& T \subseteq S) \Rightarrow D^*(T))$; hence, it is enough to show that $D^*(M)$ holds. Now, given φ, the cohesiveness of M implies that either $M \cap \delta \varphi$ or $M - \delta \varphi$ is finite. If $M \cap \delta \varphi$ is finite, then $[D^*(M)]$ holds "vacuously". If, on the other hand, $M - \delta \varphi$ is finite, then (by reason of the "Reduction Theorem") there is a total recursive function φ_j such that φ_j and φ_i agree on $M \cap \delta \varphi$. By Lemma 1, $[D^*_i(M)]$. Hence, since φ_j extends φ_i on M, $[D^*_i(M)]$. Thus $D^*(M)$, and the lemma is proved.

Lemma 3 [7]. There exists a maximal Σ^0_1 set M such that $M < 0^\prime$.

As we noted at the beginning of the proof of Lemma 2, D^* is a hereditary property; this is true also of D and UH. The situation with respect to D^{**} is quite different, as our proof of Proposition 6, based on the next lemma, will show. (For background material regarding retraceability, see [2] or [5].)

Lemma 4. Let S be an infinite retraceable set such that $\neg D^*(S)$. Then there is a Σ^0_1 set C such that $S \cap C$ is infinite & $\neg D^{**}(S \cap C)$.

Proof. Let g be a partial recursive function which retraces S, and let $\varphi = \varphi_o$ be such that $\neg [D^*_0(S)]$. We assume, w.l.o.g., that $g(x) < x$ for all $x \in \delta g$. Let g^s, φ^s denote, respectively, the sets of pairs belonging to g, φ after s steps in some fixed recursive enumeration of all pairs in g, φ (with exactly one pair entering each of g, φ at each step of the enumeration). We shall enumerate C, along with a partial recursive function Ψ having domain C, in stages, as follows.

Stage 0. Set $C^0 = \Psi^0 = \emptyset$; then proceed to Stage 1.

Stage s + 1. For each x, let

$$D^*_x = \{ z | x \in \delta \varphi^s - \delta \Psi^s \& x < z \leq \varphi^s(x) \& \langle z, x \rangle \in g^s \}.$$

Let
RATE-OF-GROWTH CONDITIONS

\[E^s = \{ z \mid (\exists t < s)(\exists x)[\langle z, x \rangle \in g^t \& x \in \delta \Psi^t - \delta \Psi^t \& D_x^t \neq \emptyset \& x < z < \varphi'(x) \& (\forall y < x)[y \notin \delta \Psi^t - \delta \Psi^t \vee D_y^t = \emptyset] \& z \in C^s] \}. \]

If there is no \(x \) such that \(x \in \delta \Psi^t - \delta \Psi^t \& D_x^t \neq \emptyset \), set \(C^{s+1} = C^s \cup E^s \) and \(\Psi^{s+1} = \Psi^s \cup \{ \langle w, 0 \rangle \mid w \in E^s - \delta \Psi^t \} \); then proceed to Stage \(s + 2 \).

Otherwise, let \(x_0 = (\varphi)(x \in \delta \Psi^t - \delta \Psi^t \& D_x^t \neq \emptyset) \), and define:

\[
C_0^{s+1} = C^s \cup \{ x_0 \} \cup D_{x_0}^s; \\
\Psi_0^{s+1} = \Psi^s \cup \{ \langle x_0, \varphi'(x_0) \rangle \}; \\
C^{s+1} = C_0^{s+1} \cup E^s; \\
\Psi^{s+1} = \Psi_0^{s+1} \cup \{ \langle w, 0 \rangle \mid w \in C^{s+1} - \delta \Psi_0^{s+1} \}.
\]

Then proceed to Stage \(s + 2 \).

We define \(C = \bigcup_s C^s \), \(\Psi = \bigcup_s \Psi^s \). Clearly, \(C \in \Sigma_0^1 \) and \(\Psi \) is a recursively enumerable set of pairs such that \((\forall s)(\exists^1 \Psi^s \subseteq \Psi^{s+1}) \). Since, by a trivial induction on \(s \), each \(\Psi^s \) is seen to be a function, we have that \(\Psi \) is a partial recursive function. Obviously \(\delta \Psi = C \); moreover, if \(x < y \& \{ x, y \} \subseteq C \cap S \& g(y) = x \) \& \(x = p_y(n) \), then \(y = p_x(n + 1) \). The lemma will therefore be proved if we can justify the following claim: there is a sequence \(\{ \langle x_i, y_i \rangle \} \) of pairs such that \((\forall t)(\exists x_i < y_i < x_{i+1} \& \{ x_i, y_i \} \subseteq S \cap \delta \Psi \& g(y_i) = x_i \& \Psi(x_i) > y_i) \). Suppose we have found the first \(n_0 \) terms, \(\langle x_0, y_0 \rangle, \ldots, \langle x_{n_0-1}, y_{n_0-1} \rangle \), of such a sequence. (If \(n_0 = 0 \), we are starting from scratch.) Let \(s_0 = (\mu)(x \& \{ x_i \mid i < n_0 \} \subseteq \delta \Psi \& g(x) = x \) \& \(x < g(x) \). Let \(\langle x, y \rangle \) be the lexicographically least pair such that: \(\{ x, y \} \subseteq S, \ n_0 > 0 \Rightarrow x > g(x) > y, \ n_0 \), \(\delta \Psi \) \& \(x \notin \delta \Psi \) \& \(y \notin \delta \Psi \). Let \(w_0 = (\mu)(x \in \delta \Psi^t) \). We claim that \(x \in \delta \Psi \). For let \(t_0 = (\mu)(x \in \delta \Psi^t \& \delta \Psi^t \) for some \(s \geq z_0 \). But then, as a trivial induction on \(s \) shows, we have either \(\Psi(x) = 0 \) or \(\Psi(x) = 0 \) if \(\Psi(x) = 0 \), then let \(z_0 = (\mu)(x \in \delta \Psi^t \& \delta \Psi^t \) for some \(s > z_0 \). But then we can define \(x_{n_0} = x, y_{n_0} = y \). If, on the other hand, \(\Psi(x) = 0 \), then, as is clear from the construction, we must have \(g(x) \in \delta \Psi \& \Psi(g(x)) = \Psi(g(x)) \) \& \(g(x) \) \& \(g(x) \). Thus, \(x = \delta \Psi \). By induction, then, the required sequence \(\{ \langle x_i, y_i \rangle \} \) exists and the lemma is proved.

We are now ready to present our "catalog".

Proposition 1. \(D^*(S) \Rightarrow D^{**}(S) \Rightarrow UH(S) \).

Proof. Obvious, from definitions.

Proposition 2. If \(S \) is regressive, then \(D^*(S) \Rightarrow D(S) \).
Proof. It is clear that any regressive set satisfying condition D^* is in fact retraceable. Now use [5, proof of Theorem 3.2].

Proposition 2 might seem a bit strange at first sight, since $[D_i(S)]$ involves the action of φ_i on S while $[D^*_i(S)]$ does not. The next proposition redresses the intuitive balance.

Proposition 3. There exists a Π^0_1 set S such that $D^*(S) \land \neg D(S)$.

Proof. As shown in [8], $D(S) \Rightarrow S > \emptyset'$. Applying Lemma 3, let S be a cohesive Π^0_1 set such that $S < \emptyset'$. Then $\neg D(S)$. On the other hand, $D^*(S)$ holds by Lemma 2.

Proposition 4. There exists a retraceable Π^0_1 set S such that $D(S) \land \neg UH(S)$.

Proof. By (for instance) [5, Theorems 3.1 and 3.2], there is a retraceable Π^0_1 set T such that $D(T)$ holds. By [6, Theorem 4.1], there is a second retraceable Π^0_1 set R such that $p_T \circ p_R$ is the principal function of a set S for which $\neg UH(S)$. But, the condition D is (as is very easily seen) preserved under compositional injection; and, the composition of principal functions of two infinite retraceable Π^0_1 sets is again an infinite retraceable Π^0_1 set. S therefore verifies our proposition. (Easy direct constructions also are available for proving Proposition 4.)

Proposition 5. There exists a retraceable Π^0_1 set S such that $D^{**}(S) \land \neg D^*(S)$.

Proof. By [2], [4], and [7], let S be a retraceable Π^0_1 set such that $S < \emptyset' \land D^{**}(S)$. By [8] plus Proposition 2, we have $\neg D^*(S)$.

Proposition 6. There exists an infinite d.r.e. set S such that $UH(S) \land \neg D^{**}(S)$.

Proof. Applying Proposition 5, let S_0 be a retraceable Π^0_1 set such that $\neg D^*(S_0) \land D^{**}(S_0)$. Applying Lemma 4, let C be a Σ^0_1 set such that $S_0 \cap C$ is infinite $\land \neg D^{**}(S_0 \cap C)$. Since UH is a hereditary condition, and since UH and D^{**} are equivalent for Π^0_1 sets (using the “Reduction Theorem”), we see that $S = S_0 \cap C$ verifies the proposition.

Several fairly obvious questions occur in connection with the foregoing results:

Q1. Is there a cohesive set C such that $\neg D^*(C)$?

QII. Is there a complete maximal Σ^0_1 set M such that $\neg D(\overline{M})$?

QIII. If S is Π^0_1, can the set $S \cap C$ of Lemma 4 (and hence the set S of Proposition 6) be required to be retraceable (or even, merely, regressive)? In an earlier version of this paper, we claimed this could be done. The referee, however, spotted a formidable gap in the proof; retraceability was lost during repairs.

QIV. Is Lemma 4 a nonvacuous assertion? That is, is there an example of...
an infinite set S such that $\neg D^*(S) \& (\forall C \in \Sigma_1)[S \cap C \text{ infinite } \Rightarrow D^{**}(S \cap C)]$?

REFERENCES

DEPARTMENT OF MATHEMATICS, TEXAS TECH UNIVERSITY, LUBBOCK, TEXAS 79409