Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Note on the Nevannlinna proximity function

Author: John L. Lewis
Journal: Proc. Amer. Math. Soc. 69 (1978), 129-134
MSC: Primary 30A70; Secondary 30A68
MathSciNet review: 0499158
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \lambda $ be a positive function on $ (0,\infty )$ with $ {\lim _{r \to \infty }}\lambda (r) = \infty $, and A an arbitrary set of capacity zero. An example is given of a meromorphic function f for which $ m(r,a) \to \infty ,r \to \infty $, whenever $ a \in A$, and $ T(r,f) = O[{(\log r)^2}\lambda (r)],r \to \infty $ .

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A70, 30A68

Retrieve articles in all journals with MSC: 30A70, 30A68

Additional Information

PII: S 0002-9939(1978)0499158-6
Keywords: Meromorphic function, Nevanlinna proximity function, capacity
Article copyright: © Copyright 1978 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia