One relator groups having a finitely presented normal subgroup
Authors:
A. Karrass and D. Solitar
Journal:
Proc. Amer. Math. Soc. 69 (1978), 219222
MSC:
Primary 20F05
MathSciNet review:
0466323
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A classification is given for onerelator groups having a finitely presented normal subgroup of infinite index.
 [1]
Gilbert
Baumslag, Finitely generated cyclic extensions of free groups are
residually finite, Bull. Austral. Math. Soc. 5
(1971), 87–94. MR 0311776
(47 #338)
 [2]
Robert
Bieri, Homological dimension of discrete groups, Mathematics
Department, Queen Mary College, London, 1976. Queen Mary College
Mathematics Notes. MR 0466344
(57 #6224)
 [3]
Ian
M. Chiswell, Euler characteristics of groups, Math. Z.
147 (1976), no. 1, 1–11. MR 0396785
(53 #645)
 [4]
J.
Fischer, A.
Karrass, and D.
Solitar, On onerelator groups having elements
of finite order, Proc. Amer. Math. Soc. 33 (1972), 297–301.
MR
0311780 (47 #342), http://dx.doi.org/10.1090/S00029939197203117800
 [5]
A.
Karrass, A.
Pietrowski, and D.
Solitar, An improved subgroup theorem for HNN groups with some
applications, Canad. J. Math. 26 (1974),
214–224. MR 0432766
(55 #5749)
 [6]
A.
Karrass and D.
Solitar, Subgroups of 𝐻𝑁𝑁 groups and groups
with one defining relation, Canad. J. Math. 23
(1971), 627–643. MR 0301102
(46 #260)
 [7]
A.
Karrass and D.
Solitar, The subgroups of a free product of two
groups with an amalgamated subgroup, Trans.
Amer. Math. Soc. 150 (1970), 227–255. MR 0260879
(41 #5499), http://dx.doi.org/10.1090/S00029947197002608799
 [8]
John
Stallings, Groups of cohomological dimension one, Applications
of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVIII, New York,
1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 124–128.
MR
0255689 (41 #349)
 [1]
 G. Baumslag, Finitely generated cyclic extensions of free groups are residually finite, Bull. Austral. Math. Soc. 5 (1971), 8794. MR 0311776 (47:338)
 [2]
 R. Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, London, 1976. MR 0466344 (57:6224)
 [3]
 I. M. Chiswell, Euler characteristics of groups, Math. Z. 147 (1976), 111. MR 0396785 (53:645)
 [4]
 J. Fischer, A. Karrass and D. Solitar, On onerelator groups having elements of finite order, Proc. Amer. Math. Soc. 33 (1972), 297301. MR 0311780 (47:342)
 [5]
 A. Karrass, A. Pietrowski and D. Solitar, An improved subgroup for HNN groups with some applications, Canad. J. Math. 26 (1974), 214224. MR 0432766 (55:5749)
 [6]
 A. Karrass and D. Solitar, Subgroups of HNN groups and groups with one defining relation, Canad. J. Math. 23 (1971), 627643. MR 0301102 (46:260)
 [7]
 , The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 149 (1970), 227255. MR 0260879 (41:5499)
 [8]
 J. Stallings, Groups of cohomological dimension one, Proc. Sympos. Pure Math., vol. 17, Amer. Math. Soc., Providence, R. I., 1970, pp. 124128. MR 0255689 (41:349)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
20F05
Retrieve articles in all journals
with MSC:
20F05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197804663233
PII:
S 00029939(1978)04663233
Keywords:
Onerelator groups
Article copyright:
© Copyright 1978
American Mathematical Society
