Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Equiconvergence of matrix transformations


Author: K. A. Jukes
Journal: Proc. Amer. Math. Soc. 69 (1978), 261-270
MSC: Primary 40D10; Secondary 10H25
DOI: https://doi.org/10.1090/S0002-9939-1978-0477552-7
MathSciNet review: 0477552
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Equiconvergence of matrix transformations is related to the existence of Tauberian constants. Agnew's result on the equiconvergence of Cesàro and Riesz means is shown to be best possible. Finally, equiconvergence of equivalent arithmetical summation methods related to the prime number theorem is investigated.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Agnew, Equiconvergence of Cesàro and Riesz transforms of series, Duke Math. J. 22 (1955), 451-160. MR 17, 146. MR 0071560 (17:146h)
  • [2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford, 1960. MR 0067125 (16:673c)
  • [3] K. A. Jukes, Ordinary, strong and absolute Tauberian constants, Proc. London Math. Soc. (3) 22 (1971), 747-768. MR 45 #773. MR 0291682 (45:773)
  • [4] -, On the Ingham and (D, $ h(n)$) summation methods, J. London Math. Soc. (2) 3 (1971), 699-710. MR 44 #7181. MR 0289996 (44:7181)
  • [5] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2nd ed., Chelsea, New York, 1953.
  • [6] Y. L. Luke, The special functions and their approximations, Vol. 1, Academic Press, New York, 1969.
  • [7] I. J. Maddox, Tauberian constants, Bull. London Math. Soc. 1 (1969), 193-200. MR 40 #596. MR 0247328 (40:596)
  • [8] H. M. Stark, On the asymptotic density of the k-free integers, Proc. Amer. Math. Soc. 17 (1966), 1211-1214. MR 33 #7310. MR 0199161 (33:7310)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40D10, 10H25

Retrieve articles in all journals with MSC: 40D10, 10H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0477552-7
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society