Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The solution of $ 3y^2 \pm 2^n = x^3$


Author: Stanley Rabinowitz
Journal: Proc. Amer. Math. Soc. 69 (1978), 213-218
MSC: Primary 10B10
MathSciNet review: 0480326
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The diophantine equation

$\displaystyle \quad 3{y^2} + {2^n}\gamma = {x^3},\quad {\text{with}}\;\gamma = \pm 1$ ($ \ast$)

is solved.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10B10

Retrieve articles in all journals with MSC: 10B10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1978-0480326-4
PII: S 0002-9939(1978)0480326-4
Keywords: Ring of integers, norm
Article copyright: © Copyright 1978 American Mathematical Society