LOCAL COMPACTNESS AND HEWITT REALCOMPACTIFICATIONS OF PRODUCTS

HARUTO OHTA

Abstract. In this note we prove McArthur's conjecture [6]: If card X is nonmeasurable and if v(X X Y) = vX X vY holds for each space Y, then X is locally compact. Consequently, we can completely characterize the class of all spaces X such that for each space Y, v(X X Y) = vX X vY holds.

1. Introduction. All spaces considered in this note will be completely regular Hausdorff. For a space X, vX denotes the Hewitt realcompactification of X, and the symbolism v(X X Y) = vX X vY means that X X Y is C-embedded in vX X vY. Following [6], let R denote the class of all spaces X such that for each space Y, v(X X Y) = vX X vY holds. It is known that a locally compact realcompact space of nonmeasurable cardinal is a member of R and that every member of R is realcompact (Comfort [1, Corollary 2.2], McArthur [6, Theorem 5.2]). In [6], McArthur conjectured that if card X is nonmeasurable and X is a member of R, then X is locally compact. The main purpose of this note is to establish his conjecture positively. More precisely, we can prove the following theorems. The implication (a) → (b) of Theorem 1 was proved by Comfort [1].

Theorem 1. For a space X of nonmeasurable cardinal the following conditions are equivalent:

(a) X is locally compact.
(b) X X Y is C-embedded in X X vY for each space Y.

Theorem 2. For a space X of nonmeasurable cardinal the following conditions are equivalent:

(a) X is locally pseudocompact.
(b) X X Y is C-embedded in X X vY for each k-space Y.

We remark that, in Theorems 1 and 2, the assumption "card X is nonmeasurable" is useful only for the implication (a) → (b). Combining these theorems with the results of Comfort and McArthur, quoted above, and Hušek [4, Theorem 3], we have the following theorems.

Theorem 3. For a space X the following conditions are equivalent:
(a) X is locally compact, realcompact and card X is nonmeasurable.
(b) $\nu(X \times Y) = \nu X \times \nu Y$ holds for each space Y.

THEOREM 4. For a space X the following conditions are equivalent:
(a) νX is locally compact and card X is nonmeasurable.
(b) $\nu(X \times Y) = \nu X \times \nu Y$ holds for each k-space Y.

For the notions of locally pseudocompact spaces and k-spaces see [1]. For an ordinal α, we denote by $W(\alpha)$ the set of all ordinals less than α topologized with order topology, and by ω_0 the first infinite ordinal. Other terms can be found in [3].

2. Proofs of theorems.

PROOF OF THEOREM 1. (a) \rightarrow (b). This is the result of Comfort [1, Theorem 2.1]. (b) \rightarrow (a). Suppose, on the contrary, that X is not locally compact at $x_0 \in X$. Let $\{G_\lambda \mid \lambda \in \Lambda\}$ be a neighborhood base at x_0 in X. Then, for each $\lambda \in \Lambda$, $cl_{\beta X} G_\lambda$ is not compact, and thus there exists a point $x_\lambda \in cl_{\beta X} G_\lambda \cap (\beta X - X)$, where βX is the Stone-Čech compactification of X. For each $\lambda \in \Lambda$, let $\{G(\lambda, \sigma) \mid \sigma \in \Sigma_\lambda\}$ be a neighborhood base at x_λ in βX. For each $\sigma \in \Sigma_\lambda$, we can choose a point $x(\lambda, \sigma) \in X$ and an open set $H(\lambda, \sigma)$ in X such that $x(\lambda, \sigma) \in H(\lambda, \sigma) \subset G(\lambda, \sigma) \cap G_\lambda$. Let s_λ be an ideal point, and set $S_\lambda = \Sigma_\lambda \cup \{s_\lambda\}$, topologized as follows: Each point of Σ_λ is isolated and $\{J(\lambda, \sigma) \mid \sigma \in \Sigma_\lambda\}$ is a neighborhood base at s_λ, where $J(\lambda, \sigma) = \{s_\lambda\} \cup \{\tau \in \Sigma_\lambda \mid G(\lambda, \sigma) \supseteq G(\lambda, \tau)\}$. Let n be a regular cardinal greater than $sup\{\text{card} \Sigma_\lambda \mid \lambda \in \Lambda\}$, and let ω_n be the initial ordinal of n. For each $\lambda \in \Lambda$, let

$$T_{\lambda(1)} = \{\{(\lambda(1), \gamma, \beta) \mid \gamma < \omega_n, \beta < \omega_0\}\}$$

be the copy of $W(\omega_n + 1) \times W(\omega_0 + 1)$, and let

$$T_{\lambda(2)} = \{\{(\lambda(2), \gamma, s) \mid \gamma < \omega_n, s \in S_\lambda\}\}$$

be the copy of $W(\omega_n + 1) \times S_\lambda$. By identifying a point $\{(\lambda(1), \gamma, \omega_0)\}$ with $\{(\lambda(2), \gamma, s)\}$ for $\gamma < \omega_n$, we have a quotient space T_λ and a quotient map f_λ: $T_{\lambda(1)} \oplus T_{\lambda(2)} \rightarrow T_\lambda$, where $A \oplus B$ denotes the topological sum of A and B. Let us set $Z = \bigoplus \{T_\lambda \mid \lambda \in \Lambda\}$, and let Y_0 be the quotient space obtained from Z by collapsing a set $\{f_\lambda((\lambda(1), \omega_0, \beta)) \mid \lambda \in \Lambda\}$ to a single point $y(\beta) \in Y_0$ for $\beta < \omega_0$. Let $g: Z \rightarrow Y_0$ be the quotient map, and set $h_\lambda = g \circ f_\lambda$ for each $\lambda \in \Lambda$. Then $y(\omega_0) = h_\lambda((\lambda(2), \omega_n, s_\lambda))$ for each $\lambda \in \Lambda$. Let us set $Y = Y_0 - \{y_0\}$, where $y_0 = y(\omega_0)$. We shall now prove that $Y_0 \subset \nu Y$ by showing that Y is C-embedded in Y_0. Let ϕ be a real-valued continuous function on Y. For each $\lambda \in \Lambda$, by the same argument as in [3, 8.20], there is $\gamma_\lambda \in W(\omega_n)$ such that $\theta_\lambda = \phi \circ (h_\lambda|h_\lambda^{-1}(Y))$ takes on the constant value t_λ on $\{(\lambda(1), \gamma, \omega_0) \mid \gamma_\lambda \leq \gamma \leq \omega_0\} \cup \{(\lambda(2), \gamma, s) \mid \gamma \leq \gamma < \omega_n\}$. Since

$$\theta_\lambda((\lambda(1), \omega_n, \beta)) = \theta_\mu((\mu(1), \omega_n, \beta))$$

for $\lambda, \mu \in \Lambda$ and for each $\beta < \omega_0$, we have $t_\lambda = t_\mu$ for $\lambda, \mu \in \Lambda$. Extend ϕ over Y_0 by setting $\phi(y_0) = t_\lambda$. Then it is easy to see that the extension ϕ is
continuous. Thus Y is C-embedded in Y_0, and hence $Y_0 \subset \nu Y$. It remains to show that $X \times Y$ is not C-embedded in $X \times \nu Y$. For each $\lambda \in \Lambda$ and each $\sigma \in \Sigma_\lambda$, let us set
\[y(\lambda, \sigma) = h_\lambda((\lambda(2), \omega_\sigma, \sigma)), \]
\[K(\lambda, \sigma) = h_\lambda\left(\{(\lambda(2), \gamma, \sigma)|\gamma < \omega_\sigma\}\right). \]
And let us set
\[p(\lambda, \sigma) = (x(\lambda, \sigma), y(\lambda, \sigma)) \in X \times Y, \]
\[L(\lambda, \sigma) = H(\lambda, \sigma) \times K(\lambda, \sigma) \subset X \times Y, \]
\[\mathcal{L} = \{L(\lambda, \sigma)|\lambda \in \Lambda, \sigma \in \Sigma_\lambda\}. \]
Then $L(\lambda, \sigma)$ is a neighborhood at $p(\lambda, \sigma)$ in $X \times Y$. Now we show that \mathcal{L} is discrete in $X \times Y$. To do this, let $p = (x, y) \in X \times Y$; then $y = h_\mu((\mu(i), \delta, t))$ for some $\mu \in \Lambda$, $i \in \{1, 2\}$, $\delta < \omega_\sigma$ and $t \in W(\omega_0 + 1) \oplus S_\mu$. If $t \in W(\omega_0 + 1)$ and $t < \omega_\sigma$, then
\[V(y) = \bigcup \{h_\lambda(T_{\lambda(1)})|\lambda \in \Lambda\} \cap Y \]
is a neighborhood at y in Y such that $V(y) \cap K(\lambda, \sigma) = \emptyset$ for each $\lambda \in \Lambda$ and each $\sigma \in \Sigma_\lambda$, and hence $X \times V(y)$ is a neighborhood at p which meets no member of \mathcal{L}. If $t = \omega_0$ or s_μ, then there exist $\tau \in \Sigma_\mu$ and a neighborhood $V(x)$ at x such that $V(x) \cap G(\mu, \tau) = \emptyset$. If we set
\[V(y) = \bigcup \{h_\mu((\mu(1), \gamma, \beta)|\gamma < \delta, \beta < \omega_\sigma\} \]
\[\bigcup \{h_\mu((\mu(2), \gamma, s)|\gamma < \delta, s \in J(\mu, \tau)\}, \]
then $V(y)$ is a neighborhood at y in Y such that $V(x) \times V(y)$ meets no member of \mathcal{L}. If $t \in \Sigma_\mu$, then $X \times K(\mu, t)$ is a neighborhood at p which meets only $L(\mu, t)$. Hence \mathcal{L} is discrete in $X \times Y$. For each $\lambda \in \Lambda$ and each $\sigma \in \Sigma_\lambda$, there is a real-valued continuous function $\psi_{(\lambda, \sigma)}$ on $X \times Y$ such that $\psi_{(\lambda, \sigma)}(p(\lambda, \sigma)) = 0$ and $\psi_{(\lambda, \sigma)}(q) = 1$ for each $q \in (X \times Y) - L(\lambda, \sigma)$. If we define a function ψ by
\[\psi(q) = \inf\{\psi_{(\lambda, \sigma)}(q)|\lambda \in \Lambda, \sigma \in \Sigma_\lambda\}, \quad q \in X \times Y, \]
then ψ is continuous, since \mathcal{L} is discrete. For our purpose, it suffices to show that ψ admits no continuous extension to the point $p_\sigma = (x_\sigma, y_\sigma) \in X \times \nu Y$. Let U be a given neighborhood at p_σ. There exist $\mu \in \Lambda$ and a neighborhood $V(y_\sigma)$ at y_σ in Y_σ such that $p_\sigma \in G_\mu \times V(y_\sigma) \subset U$. Then $y(\mu, \tau) \in V(y_\sigma)$ for some $\tau \in \Sigma_\mu$, and hence $p(\mu, \tau) \in U$ and $\psi(p(\mu, \tau)) = 0$. On the other hand, $y(\beta)$ is in $V(y_\sigma)$ for some $\beta < \omega_\sigma$, and then $q = (x_\sigma, y(\beta)) \in U$ and $\psi(q) = 1$. This shows that ψ does not extend continuously to p_σ. Hence the proof is completed.

Before proving Theorem 2, we prove the implication (a) \rightarrow (b) of Theorem 4, which slightly improves a theorem of Comfort [1, Theorem 2.4]. We denote
by \(\mu X\) the topological completion of \(X\) (i.e., the completion of \(X\) with respect to its finest uniformity).

Proof of Theorem 4. (a) \(\Rightarrow\) (b). Assume that \(\nu X\) is locally compact and card \(X\) is nonmeasurable. Let \(Y\) be a \(k\)-space. Then, by [1, Theorem 2.1], \(\nu X \times Y\) is \(C\)-embedded in \(\nu X \times \nu Y\). Since \(\nu X\) is locally compact, by [5, Theorem 1.5], we have \(\nu X = \mu X\). Hence \(\mu(\nu X \times Y) = \mu X \times \mu Y\) holds by [5, Theorem 2.3], and so \(\nu X \times Y\) is \(C\)-embedded in \(\mu X \times Y\) (= \(\nu X \times Y\)). Thus we have \(\nu(X \times Y) = \nu X \times \nu Y\).

Proof of Theorem 2. (a) \(\Rightarrow\) (b). Let \(X\) be a locally pseudocompact space of nonmeasurable cardinal and let \(Y\) be a \(k\)-space. Now it suffices to show that for each pseudocompact subset \(S\) of \(X\), \(S \times Y\) is \(C\)-embedded in \(S \times \nu Y\). To see this, let \(S\) be a given pseudocompact subset of \(X\), then we have \(\nu S = \beta S\) by [3, 8A4]. Thus \(\nu(S \times Y) = \nu S \times \nu Y\) holds by Theorem 4, (a) \(\Rightarrow\) (b) proved above, and hence \(S \times Y\) is \(C\)-embedded in \(S \times \nu Y\). (b) \(\Rightarrow\) (a). Suppose on the contrary that \(X\) is not locally pseudocompact at \(x_0 \in X\). Let \(\{G_\lambda | \lambda \in \Lambda\}\) be a neighborhood base at \(x_0\). Then, for each \(\lambda \in \Lambda\), \(\text{cl}_X G_\lambda\) is not pseudocompact, and thus we can find a countable decreasing family \(\{G(\lambda, \sigma) | \sigma \in \Sigma_\lambda\}\) of open sets in \(X\) such that \(\bigcap \{\text{cl}_X G(\lambda, \sigma) | \sigma \in \Sigma_\lambda\} = \emptyset\) and \(G(\lambda, \sigma) \subset G_\lambda\) for each \(\sigma \in \Sigma_\lambda\). Let us set \(H(\lambda, \sigma) = G(\lambda, \sigma)\), and choose a point \(x(\lambda, \sigma) \in H(\lambda, \sigma)\). We construct \(Y_0\) and \(Y\) quite similarly to the proof of Theorem 1. Examining the process, one sees that then each \(S_\lambda\) is compact, and hence \(Z\) is locally compact. Since every quotient space and open subspace of a \(k\)-space is a \(k\)-space, \(Y\) is a \(k\)-space. Therefore, by pursuing the proof of Theorem 1, we have Theorem 2.

To prove the implication (b) \(\Rightarrow\) (a) of Theorems 3 and 4, we need a theorem of Husek [4, Theorem 3]. His theorem can be restated as follows:

Husek's Theorem. For a space \(X\) the following conditions are equivalent:

(a) card \(X\) is nonmeasurable.

(b) \(\nu(X \times Y) = \nu X \times \nu Y\) holds for each discrete space \(Y\).

Proof of Theorem 3. (a) \(\Rightarrow\) (b) is the result of Comfort quoted in the introduction. (b) \(\Rightarrow\) (a). By Husek's theorem, card \(X\) is nonmeasurable. It follows from Theorem 1 and [6, Theorem 5.2] that \(X\) is locally compact and realcompact.

Proof of Theorem 4. (b) \(\Rightarrow\) (a). Since a discrete space is a \(k\)-space, by Husek's Theorem, card \(X\) is nonmeasurable. By Theorem 2, \(\nu X\) is locally pseudocompact, and hence is locally compact, because every pseudocompact realcompact space is compact (cf. [3, 8E1]).

3. Remarks. (1) If \(\nu X\) is locally compact, then \(X\) is locally pseudocompact, but the converse is false (see [1]).

(2) The space \(Y\) constructed in the proof of Theorems 1 and 2 and [6, Theorem 5.2] is 0-dimensional (i.e., ind \(Y\) = 0). Hence all theorems in this note remain true if "for each \((k\)-) space \(Y\)" is replaced by "for each 0-dimensional \((k\)-) space \(Y\)".
(3) A space similar to the space S_χ in the proof of Theorem 1 was used in [6] to show that every member of \mathfrak{B} is realcompact.

(4) A space X is said to be **topologically complete** if it is complete with respect to its finest uniformity (i.e., $X = \mu(X)$). In [7], Morita proved that if X is locally compact topologically complete, then $\mu(X \times Y) = \mu X \times \mu Y$ holds for each space Y, and Isiwata [5] proved that if $\mu(X \times Y) = \mu X \times \mu Y$ holds for each space Y, then X is topologically complete (cf. also [8]). Hence the analogous results of Theorems 1-4 remain true, with no cardinality conditions, for topological completions (in this case, we need to use [5, Theorem 2.3], [7, Theorem 3.1] and [2, Lemma 3.1] instead of Theorem 4, (a) \rightarrow (b), [3, 8A4] and [3, 8E1], respectively).

Added in Proof. Recently, Blair and Hager (*z*-embedding in $\beta X \times \beta Y$, *Set theoretic topology*, Academic Press, New York, 1977) asked whether the following condition (d') implies that $X \times Y$ is *z*-embedded in $\beta X \times \beta Y$ (i.e., each zero-set of $X \times Y$ is the trace on $X \times Y$ of a zero-set of $\beta X \times \beta Y$):

(d') For every real-valued continuous function f on $X \times Y$ and every $\varepsilon > 0$, there is a countable open rectangular cover $\{G_n\}$ of $X \times Y$ such that $\sup \{|f(p) - f(q)| \mid p, q \in G_n\} < \varepsilon$ for each n.

In the same paper, they proved that if X has a countable base, then $X \times Y$ satisfies (d') for each space Y, and that if $X \times Y$ is *z*-embedded in $\beta X \times \beta Y$, then $\nu(X \times Y) = \nu X \times \nu Y$ holds. From these facts, since there exists a nonlocally compact space with a countable base, Theorem 3 answers this question negatively. Furthermore, combining Theorem 3 with their results (3.2, 3.3), we obtain: X is a locally compact space with a countable base if and only if $X \times Y$ is *z*-embedded in $\beta X \times \beta Y$ for each space Y.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TSUKUBA, SAKURAMURA IBARAKI, 300-31, JAPAN