ON THE NOTION OF \(n \)-CARDINALITY

TEODOR C. PRZYMUSiNSKI

ABSTRACT. In this paper we introduce and investigate the notion of \(n \)-cardinality, which turned out to be useful in constructions involving product spaces and has a number of interesting applications.

In this paper we introduce and investigate the notion of \(n \)-cardinality, which turned out to be useful in constructions involving product spaces and has a number of interesting applications (see \([P]\), \([P_1]\), \([P_2]\), and \([P_3]\)).

The notion of \(n \)-cardinality arose after discussions with Eric van Douwen, who also proved an important case of Theorem 1 (Corollary 1). The author is grateful to him for his valuable suggestions.

Throughout this paper \(n \) denotes a natural number and \(c = 2^n \). Let \(X \) be an arbitrary set. For a point \(p = (p_1, \ldots, p_n) \) from \(X^n \) by \(p \) we shall denote the set \(\{p_1, \ldots, p_n\} \) of coordinates of \(p \). By \(p_i \) we shall always mean the \(i \)th coordinate of \(p \). For undefined notions and symbols the reader is referred to \([E]\).

Lemma 1. For a subset \(A \) of \(X^n \) the following cardinals are well defined and they are equal provided that one of them or—equivalently—all of them are infinite:

(i) \(\max \{|B|: B \subset A \text{ and } p_i \neq q_i, \text{ for } i = 1, 2, \ldots, n \text{ and every two distinct points } p \text{ and } q \text{ from } B \} \);

(ii) \(\max \{|B|: B \subset A \text{ and } p \cap q = \emptyset, \text{ for every two distinct points } p \text{ and } q \text{ from } B \} \);

(iii) \(\min \{|Y|: Y \subset X \text{ and } A \subset \bigcup_{i=1}^{n} (X^{i-1} \times Y \times X^{n-i}) \} \).

Proof. Let us denote by \(\tau \) the cardinal number defined in (iii). Since \(\tau \) is well defined it suffices to show that: (a) if \(\tau \geq \omega \), then cardinals described in (i) and (ii) coincide with \(\tau \) and (b) if \(\tau < \omega \), then cardinals described in (i) and (ii) are finite.

Let us note first that if \(B \) is a subset of \(A \) such that \(p_i \neq q_i, \text{ for } i = 1, 2, \ldots, n \text{ and every two distinct points } p \text{ and } q \text{ from } B \), then \(|B| \leq n \cdot \tau \).

Indeed, let \(Y \) be a subset of \(X \) of cardinality \(\tau \) such that \(A \subset \bigcup_{i=1}^{n} (X^{i-1} \times Y \times X^{n-i}) \). For every \(i = 1, 2, \ldots, n \) and every \(y \in Y \) there exists at most one \(p \in B \) such that \(p_i = y \), therefore \(|B| \leq n \cdot \tau \). From this fact we deduce (b) and infer that in order to prove (a) it suffices to construct a subset \(B \) of \(A \)
of cardinality \(\tau \) such that \(\hat{p} \cap \hat{q} = \emptyset \), for every two distinct points \(p, q \in B \).

Assume that \(\tau \geq \omega \). We shall construct points \(p(\alpha) \) of \(B \), for \(\alpha < \tau \), by transfinite recursion. Assume that points \(p(\beta) \in A \) have been constructed for \(\beta < \alpha \) so that \(\hat{p}(\beta) \cap \hat{p}(\gamma) = \emptyset \), if \(\beta \neq \gamma \).

The set \(Z = \bigcup \{ \hat{p}(\beta) : \beta < \alpha \} \) has cardinality \(< \tau \) and therefore there exists a point

\[
p(\alpha) \in A \setminus \bigcup_{i=1}^{n} \left(X_i \times Z \times X_{n-i} \right).
\]

Clearly \(\hat{p}(\alpha) \cap \hat{p}(\beta) = \emptyset \), for every \(\beta < \alpha \), which completes the proof of the Lemma.

Definition 1. For a subset \(A \) of \(X^n \), where \(X \) is an arbitrary set, we define the \(n \)-cardinality \(|A|_n \) of \(A \) (with respect to \(X^n \)) by \(|A|_n = \max \{|B| : B \subset A \) and \(p_i \neq q_i \), for every two distinct points \(p \) and \(q \) from \(B \) and \(i = 1, 2, \ldots, n \} \). We say that \(A \) is \(n \)-countable (\(n \)-uncountable) if \(|A|_n < \omega \) (\(|A|_n \geq \omega \)).

It follows from Lemma 1 that \(n \)-cardinality is well defined and moreover:

1. \(|A|_1 = |A| \); i.e. \(n \)-cardinality generalizes the notion of cardinality;
2. \(|A|_n \leq |A| \);
3. \(|A|_2 = \min \{|Y| : A \subset Y \times X \cup X \times Y \} \),

provided that \(|A|_2 \) is infinite.

Remark 1. We can analogously define the \(n \)-cardinality of a subset \(A \) of \(\prod_{i=1}^{n} X_i \), where \(X_i \)'s are arbitrary sets, however, this potentially more general definition can be reduced to the previous one by observing that the so defined \(n \)-cardinality coincides with the \(n \)-cardinality of \(A \) with respect to \(X^n \), where \(X = \bigoplus_{i=1}^{n} X_i \). Making use of this observation, one can easily show that all results proved in this paper for subsets of \(X^n \) are actually valid--after obvious modifications--for subsets of the products \(\prod_{i=1}^{n} X_i \).

The following theorem generalizes a result of van Douwen (see Corollary 1).

Theorem 1 (Main). Let \(X \) be a complete separable metric space and \(B \) a Borel subset of \(X^n \). The following statements are equivalent:

i. \(B \) is \(n \)-uncountable;

ii. \(B \) has \(n \)-cardinality continuum;

iii. \(B \) contains a homeomorphic image \(h(C) \) of the Cantor set \(C \) such that \(\hat{h}(x) \cap \hat{h}(y) = \emptyset \), for \(x \neq y \);

iv. \(B \) contains a homeomorphic image \(h(C) \) of the Cantor set \(C \) by the diagonal

\[
h = \bigtriangleup_{i=1}^{n} h_i : C \to X^n
\]

of homeomorphic embeddings \(h_i : C \to X \);

v. (for \(n > 1 \)) \(B \) contains the graph of a homeomorphic embedding \(h \):
ON THE NOTION of \(n \)-CARDINALITY

\[C \to X^{n-1} \] of a Cantor subset \(C \) of \(X \) into \(X^{n-1} \) such that \(\hat{h}(x) \cap \hat{h}(y) = \emptyset \), for \(x \neq y \);

(vi) (for \(n > 1 \)) \(B \) contains the graph of the diagonal \(h = \bigtriangleup_{i=2}^{\infty} h_i; C \to X^{n-1} \) of homeomorphic embeddings \(h_i; C \to X \) of a Cantor subset \(C \) of \(X \) into \(X \).

Proof. It follows immediately from Lemma 1 that either of the conditions (ii)–(vi) implies (i). We shall show the converse.

It is known that every Borel subset of a separable complete metric space is a continuous image of the space \(P \) of irrationals (cf. [K, Theorem 1, Chapter III, §37]). Let \(f: P \to B \) be a continuous mapping of \(P \) onto \(B \) and assume that \(|B|^n > \omega \). Let us choose an arbitrary complete metric on \(P \). By Lemma 1 there exists a collection \(\{ p(s) \}_{s \in S} \) of points \(B \) such that \(\hat{p}(s) \cap \hat{p}(s') = \emptyset \), for \(s \neq s' \) and \(|S| = \omega_1 \).

For each \(s \in S \) choose an \(x_s \in f^{-1}(p(s)) \) and put \(T = \{ x_s \}_{s \in S} \). Without loss of generality we can assume that \(T \) is dense-in-itself (otherwise, since \(T \) is second countable, by the Bernstein Theorem we would remove countably many points from \(S \) and \(T \)).

For each \(m = 1, 2, \ldots \) and every sequence \((d_1, \ldots, d_m) \), where \(d_i = 0 \) or \(1 \), we will define a point \(t(d_1, \ldots, d_m) \in T \) and a closed ball \(B(d_1, \ldots, d_m) \) in \(P \) with the center at the point \(t(d_1, \ldots, d_m) \) and radius \(< 1/m \) so that:

\[
\begin{align*}
(4)_m & \quad B(d_1, \ldots, d_m) \subset B(d_1, \ldots, d_{m-1}), & \text{for } m > 1; \\
(5)_m & \quad \text{for each pair } (d_1, \ldots, d_m) \text{ and } (d'_1, \ldots, d'_m) \text{ of distinct sequences there exist disjoint subsets } V_0 \text{ and } V_1 \text{ of } X \text{ such that } f(B(d_1, \ldots, d_m)) \subset V'_0 \text{ and } f(B(d'_1, \ldots, d'_m)) \subset V'_1.
\end{align*}
\]

Let \(m = 1 \) and choose two distinct points \(t(0) \) and \(t(1) \) from \(T \). Since \(X \) is Hausdorff, there exist disjoint open subsets \(V_0 \) and \(V_1 \) of \(X \) with \(\hat{f}(t(j)) \subset V_j \), for \(j = 0, 1 \). By the continuity of \(f \) there exist closed balls \(B(0) \) and \(B(1) \) with centers at \(t(0) \) and \(t(1) \), respectively, and radii \(< 1 \) such that \(f(B(j)) \subset V'_j \), for \(j = 0, 1 \), which completes the first step of the inductive construction.

Assume that \(m > 2 \) and that an inductive step has been made for \(m - 1 \). Let us take an arbitrary sequence \((d_1, \ldots, d_{m-1}) \) and find two distinct points \(t_j = t(d_1, \ldots, d_{m-1}, j), j = 0, 1 \), from \(T \) belonging to the interior of \(B(d_1, \ldots, d_{m-1}) \). Such points exist because \(T \) is dense-in-itself. We can find two disjoint open subsets \(V_j, j = 0, 1 \), of \(X \) such that

\[
\hat{f}(t(d_1, \ldots, d_{m-1}, j)) \subset V_j, \quad j = 0, 1.
\]

There exist closed balls \(B(d_1, \ldots, d_{m-1}, j), j = 0, 1 \), with centers at the points \(t_j \) and radii \(< 1/m \) such that

\[
B(d_1, \ldots, d_{m-1}, j) \subset B(d_1, \ldots, d_{m-1})
\]

and

\[
f(B(d_1, \ldots, d_{m-1}, j)) \subset V'_j, \quad j = 0, 1.
\]
It is easy to see that the conditions \((4)_m\) and \((5)_m\) are satisfied, which completes our inductive construction.

One easily sees that the subset

\[
C = \bigcap_{m=1}^{\infty} \left(\bigcup_{(d_1, \ldots, d_m)} \{ B(d_1, \ldots, d_m) : (d_1, \ldots, d_m) \in \{0, 1\}^m \} \right)
\]

of \(P\) is homeomorphic to the Cantor set (cf. [K, Chapter III, §36,1]) and that the continuous mapping \(h = f|C : C \to B \subset X^n\) has the property

\[
\hat{h}(x) \cap \hat{h}(y) = \emptyset, \quad \text{for } x \neq y,
\]
in particular, \(h\) is one-to-one. As a one-to-one continuous mapping into a Hausdorff space defined on a compact space \(C\), the mapping \(h\) is a homeomorphic embedding. Therefore, (iii) is satisfied and consequently, by Lemma 1, also (ii) follows.

Let \(h(x) = (h_1(x), \ldots, h_n(x))\), for \(x \in C\). Since the mappings \(h_i\) are continuous and one-to-one, they are homeomorphic embeddings and (iv) holds.

Assume that \(n > 1\) and let \(C^1 = h_1(C) \subset X\) and \(h_i^1 = h_i \circ h_1^{-1} : C^1 \to X\), for \(i = 2, 3, \ldots, n\). Clearly \(C^1\) is homeomorphic to the Cantor set, \(h_i^1\)'s are homeomorphic embeddings of \(C^1 \subset X\) into \(X\) and the graph of the diagonal \(h^1 = \triangle_{i=2}^n h_i^1 : C^1 \to X^{n-1}\) coincides with \(h(C)\). This shows that also conditions (v) and (vi) are satisfied and completes the proof. □

Remark 2. It follows from the above proof that conditions (i)-(vi) are actually equivalent for every analytic subset \(B\) of \(X^n\), where \(X\) is an arbitrary Hausdorff space (analytic sets are continuous images of irrationals). □

Remark 3. R. Pol pointed out that Theorem 1 (and also Theorem 3) can be derived from the results obtained recently by K. Kuratowski [K4, Corollary 3], however, the direct proof of these theorems seems to be simpler. □

The following corollary has been first proved by van Douwen [vD].

Corollary 1. Let \(X\) be a separable complete metric space. A closed subset \(F\) of \(X^n\) is either \(n\)-countable or has \(n\)-cardinality continuum. □

Corollary 2. Let \(X\) be a separable complete metric space. A Borel subset \(B\) of \(X^2\) is either contained in \((X \times A) \cup (A \times X)\), with \(A\) countable, or it contains a graph of a homeomorphic embedding \(h : C \to X\) of a Cantor subset \(C\) of \(X\) into \(X\). □

Corollary 3 (ALEXANDROV-HAUSDORFF). Every uncountable Borel subset of a separable complete metric space contains a Cantor set \(C\) and therefore, has cardinality continuum. □

The next theorem (and its corollary) generalizes the classical theorem of Bernstein (cf. [K, Theorem 1, §40, I]) on the existence of totally imperfect subsets of the real line and plays an important role in applications of \(n\)-cardinality (see [P], [P1], [P2], and [P3]).

Theorem 2. Let \(X\) be a separable complete metric space. There exist disjoint
subsets A_i of X, where $i < \omega$, such that for every $n < \omega$, every n-uncountable Borel subset B of X^n and every $i < \omega$ we have

$$|B \cap A_i^n|_n = 2^\omega.$$

Proof. Let us denote by \mathcal{B}_n the family of all n-uncountable Borel subsets of X^n. Since there are at most continuum Borel subsets in a separable metric space, the cardinality of \mathcal{B}_n is $\leq c$. Let $(B_a)_{a < c}$ be such an enumeration of all elements of $\mathcal{B} = \bigcup_{a < c} \mathcal{B}_a$ that every element from \mathcal{B} is listed continuum many times. For each $\alpha < c$ there exists exactly one $n(\alpha)$ such that $B_a \in \mathcal{B}_{n(\alpha)}$.

For $\alpha < c$ and $i < \omega$ we will construct points $p(\alpha, i)$ belonging to B_a in such a way that

$$\hat{p}(\alpha, i) \cap \hat{p}(\alpha', i') = \emptyset, \text{ if } (\alpha, i) \neq (\alpha', i').$$

Let $p(0, i), i < \omega$, be arbitrary points from B_0 such that $\hat{p}(0, i) \cap \hat{p}(0, i') = \emptyset$, if $i \neq i'$. Such points exist because B_0 is $n(0)$-uncountable. Let us take $\alpha < c$ and assume that we have already constructed points $p(\beta, i)$, for $\beta < \alpha$ and $i < \omega$. The set $Y = \bigcup \{\hat{p}(\beta, i) \colon \beta < \alpha, i < \omega \}$ has cardinality less than c and therefore by Theorem 1 the set

$$B_a^* = B_a \setminus \bigcup_{j=1}^{n} (X_j^{-1} \times Y \times X_j^{n-j}),$$

where $n = n(\alpha)$, has n-cardinality continuum and consequently we can find for $i < \omega$ points $p(\alpha, i) \in B_a^*$, such that $\hat{p}(\alpha, i) \cap \hat{p}(\alpha, i') = \emptyset$, if $i \neq i'$ which completes the inductive construction. It is easy to see that (6) is satisfied.

Let us put $A_i = \bigcup_{a < c} \{\hat{p}(\alpha, i)\}$. Clearly the sets A_i, $i < \omega$, are disjoint. If $n < \omega$ and B is an n-uncountable Borel subset of X^n then there exist continuum many ordinals $\alpha < c$ such that $B = B_a$ and for every such α and every $i < \omega$ we have

$$p(\alpha, i) \in B_a \cap (\hat{p}(\alpha, i))^n \subset B \cap A_i^n.$$

It follows from Lemma 1 and (6) that $|B \cap A_i^n|_n = 2^\omega$. □

Corollary 4. Let X be a separable complete metric space. There exists a subset A of X such that for every $n < \omega$, the complement of any Borel subset of X^n containing either A^n or $(X \setminus A)^n$ is n-countable.

Proof. Let A_i's be as in Theorem 2. Put $A = A_0$ and recall that the complement of a Borel set is a Borel set. □

The following theorem can be proved in a similar way as Theorem 1 using the Theorem of Arhangel'skiï [A].

Theorem 3. Let X be a first countable complete Lindelöf space. A closed subset F of X^n is either n-countable or has n-cardinality continuum. □

Corollary 5. Let X be a first countable compact space. A closed subset F of X^n is either n-countable or has n-cardinality continuum. □
Corollary 6 (Čech-Pospíšil-Arhangel’skiï). A first countable compact space is either countable or has cardinality continuum. □

Remark 4. Theorem 3 can be generalized in the following way: Let X be a first countable Hausdorff space. A complete Lindelöf subspace A of X^n is either n-countable or has n-cardinality continuum. □

References

Instytut Matematyczny PAN, Sniadeckich 8, 00-950 Warsaw, Poland