Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A restriction theorem for space curves


Author: E. Prestini
Journal: Proc. Amer. Math. Soc. 70 (1978), 8-10
MSC: Primary 42A68
DOI: https://doi.org/10.1090/S0002-9939-1978-0467160-6
MathSciNet review: 0467160
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \alpha $ be a $ {C^k}$ curve $ (k \geqslant 3)$ in $ {R^3}$ with nonvanishing curvature and torsion. It is proved that the restriction operator $ T:f \to \hat f{\vert _\alpha }$ is bounded from $ {L^p}({R^3})$ to $ {L^q}(\alpha )$ if $ 1 \leqslant p < 15/13$ and $ 1/q > 6(1 - 1/p)$, and that T is not bounded if $ p \geqslant 6/5$ or $ 1/q < 6(1 - 1/p)$.


References [Enhancements On Off] (What's this?)

  • [1] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-35. MR 0257819 (41:2468)
  • [2] -, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52. MR 0320624 (47:9160)
  • [3] L. Carleson and P. Sjolin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287-299. MR 0361607 (50:14052)
  • [4] P. Sjolin, Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in $ {R^2}$, Studia Math. 51 (1974), 169-182. MR 0385437 (52:6299)
  • [5] L. Hörmander, Oscillatory integrals and multipliers on $ F{L^p}$, Ark. Mat. 11 (1973), 1-11.
  • [6] E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A68

Retrieve articles in all journals with MSC: 42A68


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0467160-6
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society