STONE'S THEOREM
AND SPECTRAL SUBSPACES OF AUTOMORPHISMS

ERLING STØRMER

Abstract. It is shown that spectral subspaces of automorphisms of a von Neumann algebra can be defined by use of Stone's theorem on unitary representations.

It is well known that the theory of spectral subspaces of automorphisms as developed by Arveson [1] generalizes Stone's theorem for unitary representations. In this note we shall show a converse result, thus indicating how the theory of spectral subspaces of abelian groups of automorphisms of von Neumann algebras, see [1], [2], [3], can be developed from Stone's theorem. The idea is that a *-automorphism of the bounded operators $B(H)$ on a Hilbert space H is implemented by a unitary operator, and so restricts to an isometry of the Hilbert-Schmidt operators H_2 on H. Thus Stone's theorem can be used on unitary representations on H_2 and then "lifted" to $B(H)$.

Throughout this note we let G be a locally compact abelian group with Haar measure dt and dual group Γ; $t \mapsto u_t$ is a strongly continuous unitary representation of G on the Hilbert space H, and $\alpha_t = \text{Ad}(u_t)$. Then $t \mapsto \alpha_t$ is a continuous representation of G into the automorphism group $\text{Aut} B(H)$ of $B(H)$, i.e., $t \mapsto \varphi(\alpha_t(x))$ is a continuous function for all $x \in B(H)$, $\varphi \in B(H)_u$. Recall from [1], [2], [3] that if $f \in L^1(G)$ and $x \in B(H)$ then

$$\pi_\alpha(f)(x) = \int_G f(t)\alpha_t(x) \, dt, \quad Z(f) = \{ \gamma \in \Gamma : \hat{f}(\gamma) = 0 \},$$

$$\text{Sp}_\alpha(x) = \bigcap \{ Z(f) : f \in L^1(G), \pi_\alpha(f)(x) = 0 \}.$$

We assume M is a von Neumann algebra acting on H such that $\alpha_t(M) = M$, $t \in G$. Then if E is a closed subset of Γ, its spectral subspace is

$$M^\alpha(E) = \{ x \in M : \text{Sp}_\alpha(x) \subset E \}.$$

Moreover, the subspaces $M^\alpha(E)$ determine α [1].

Lemma. Denote by $\tilde{\alpha}$, the restriction of α_t to the Hilbert-Schmidt operators H_2 on H. Then $t \mapsto \tilde{\alpha}_t$ is a weakly, hence strongly, continuous unitary representation of G on H_2.

Proof. Let $x, y \in H_2$ and $\epsilon > 0$. Let $y = y_1 + y_2$ with y_1 of finite rank and
\[\|y_2\|_2 < \epsilon \|x\|_2, \text{ where } \|z\|_2 = \langle z, z \rangle^{1/2}, \text{ and } \langle \cdot , \cdot \rangle \text{ is the inner product on } H_2. \]

Since \(\alpha_t(x) \to x \) ultraweakly as \(t \to e \), the identity in \(G \), there is a neighborhood \(N \) of \(e \) in \(G \) such that \(|\langle \alpha_t(x) - x, y_1 \rangle| < \epsilon \) for \(t \in N \). Then

\[
|\langle \alpha_t(x) - x, y \rangle| < |\langle \alpha_t(x) - x, y_1 \rangle| + |\langle \alpha_t(x) - x, y_2 \rangle| < \epsilon + 2\|x\|_2\|y_2\|_2 < 3\epsilon,
\]

proving the lemma.

By Stone's theorem applied to the continuous unitary representation \(t \to \alpha_t \) on \(H_2 \), there exists a projection valued measure \(P_\lambda \) on \(\Gamma \) with values in \(B(H_2) \) such that

\[\alpha_t = \int \lambda(t) \, dP_\lambda. \]

If \(E \) and \(F \) are closed subsets of \(\Gamma \) we denote by \(E + F \) the closure of the set \(\{ \gamma + \lambda : \gamma \in E, \lambda \in F \} \). We denote by \(P(F) \) the closed subspace of \(H_2 \) obtained as the range of \(\int \lambda(t) \, dP_\lambda \), and by \(P(F)^- \) its ultraweak closure in \(B(H) \).

Theorem. With the above assumptions and notation, if \(E \) is a closed subset of \(\Gamma \) then \(M^\alpha(E) = \bigcap \{ P(E + N)^- \} \), where the intersection is taken over all compact neighborhoods of the identity in \(\Gamma \).

Proof. Let \(F \) be a closed subset of \(\Gamma \). Let \(x \in M \cap P(F)^- \) and \((x_\beta) \) be a net in \(P(F) \) which converges ultraweakly to \(x \). Let \(f \in L^1(G) \) have Fourier transform vanishing in a neighborhood of \(F \). By [1, Proposition 1.6] \(\pi_\alpha(f) \) is an ultraweakly continuous linear map on \(B(H) \). Thus by [1, Remark, §2] \(0 = \pi_\alpha(f)(x_\beta) \to \pi_\alpha(f)(x) \), where we have identified the operator \(\pi_\alpha(f) \) defined by \(\hat{\alpha} \) on \(H_2 \) and its extension \(\pi_\alpha(f) \) to \(B(H) \). Thus \(\pi_\alpha(f)(x) = 0 \) for all such \(f \), so again by [1], \(x \in M^\alpha(F) \). Thus \(\bigcap \{ M \cap P(E + N)^- \} \subset \bigcap \{ M^\alpha(E + N) \} = M^\alpha(E) \) [1, Proposition 2.2].

Conversely, let \(x \in M^\alpha(E) \), so, in particular, \(x \in B(H)^\alpha(E) \). If \(F \) is a closed subset of \(\Gamma \) let \(R_\alpha^F(F) \) (resp. \(R^\alpha(F) \)) denote the closed (resp. ultraweakly closed) subspace of \(H_2 \) (resp. \(B(H) \)) generated by range \(\pi_\alpha(f) \) in \(H_2 \) (resp. in \(B(H) \)) for all \(f \in L^1(G) \) with \(\text{supp} \hat{f} \) compact and contained in \(F \). By [1, Proposition 2.2], \(B(H)^\alpha(E) = \bigcap \{ R_\alpha^F(E + N) \} \), where the intersection is taken over all compact neighborhoods \(N \) of the identity in \(\Gamma \). Let \(x \in R^\alpha(E + N) \) and assume there are \(f \in L^1(G) \) such that \(\text{supp} \hat{f} \) is compact and contained in \(E + N \), and \(y \in B(H) \), such that \(x = \pi_\alpha(f)(y) \). Since \(H_2 \) is ultraweakly dense in \(B(H) \), there is a net \((y_\beta) \) in \(H_2 \) which converges ultraweakly to \(y \). Since \(\pi_\alpha(f) \) is ultraweakly continuous,

\[x = \pi_\alpha(f)(y) = \lim_{\beta} \pi_\alpha(f)(y_\beta) \in R_\alpha^F(E + N) \]

But from the theory of spectral subspaces applied to unitary representations [1], \(R_\alpha^F(F) = P(F) \) for all closed sets \(F \subset \Gamma \). Thus \(x \in P(E + N)^- \) for all \(N \), and since such \(x \) are dense in \(R^\alpha(E + N) \), the proof is complete.

Remark 1. We cannot sharpen the theorem to a statement like \("M^\alpha(E) = M \cap P(E)^-" \). Indeed, let \(H \) be a separable Hilbert space and \(u \) a unitary operator on \(H \) such that the von Neumann algebra \(A \) generated by \(u \) is a maximal abelian subalgebra of \(B(H) \) without minimal projections. Let \(\alpha \) be...
the representation of the integers defined by \(\alpha_n = \text{Ad}(u^n) \in \text{Aut} \ B(H) \). Then there is no nonzero \(x \in H_2 \) such that \(\alpha_n(x) = x \) for all \(n \), so \(P(\{1\}) = \{0\} \), while \(B(H)^a(\{1\}) = A \).

Remark 2. The main idea in the proof of the theorem was to consider the restriction \(\tilde{\phi} \) of a map \(\varphi \in B(B(H)) \), the bounded linear maps of \(B(H) \) into itself, to \(H_2 \). If \(\tilde{\phi} \) is a bounded normal linear operator on \(H_2 \) we can do spectral theory for \(\tilde{\phi} \) in \(B(H_2) \). It is tempting to generalize the above theorem and try to "lift" spectral theory for \(\tilde{\phi} \) in \(B(H_2) \) to that of \(\varphi \) in \(B(B(H)) \). This, however, seems to be quite hopeless except in special cases. Indeed, while the norm \(\|\varphi\| \) of \(\varphi \) in \(B(B(H)) \) is never smaller than the norm \(\|\tilde{\varphi}\| \) of \(\tilde{\varphi} \) in \(B(H_2) \), there is no finite constant \(k > 0 \) such that \(\|\varphi\| < k\|\tilde{\varphi}\| \) for all such \(\varphi \).

References

Matematisk Institutt Postboks 1053 Blindern-Oslo 3, Norway