ERRATUM TO "RELATIVE INTEGRAL BASES"

LAWRENCE C. WASHINGTON

In the first theorem, the assumption $D \nmid a$ should be replaced by $D \nmid 4a$.
The proof for case (i) at the top of p. 94 should be changed to the following:
$z = x + \frac{1}{2} y \sqrt{-D}$ with $x, y \in \mathbb{Z}$. Taking norms and then square roots we
obtain $g = x^2 + \frac{1}{4} Dy^2$. Therefore $4g \geq D$. Since g divides D, we have
$D = g, 2g, 3g, \text{ or } 4g$. Since $4|D$ and g is odd (because $g|a$), $D \neq g, 2g, \text{ or } 3g$.
If $D = 4g$ then $D|4a$, contrary to assumption. Therefore z does not exist. The
remainder of the proof remains unchanged.

The example $a = 5, D = 20$ shows that the corrected assumption is needed,
since $1, \frac{1}{2} i(1 + \sqrt{5})$ is an integral basis for $\mathbb{Q}(\sqrt{-20}, \sqrt{5})$ over
$\mathbb{Q}(\sqrt{-20})$.

The author wishes to thank K. Pammer and H. Pfeuffer for pointing out
the error and supplying the counterexample. Also, it should be mentioned
that more general results may be found in [1].

REFERENCES

1. R. H. Bird and C. J. Parry, Integral bases for bicyclic biquadratic fields over quadratic

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742