REPRESENTABLE MONOIDS

EARL J. TAFT

Abstract. A representable monoid is one with enough representative functions to separate points. It is shown that the monoid algebra of a representable monoid is a proper algebra. In particular, the group algebra of a residually-finite group is a proper algebra. It is also shown that the free product of two representable monoids is again representable.

1. Introduction. Let S be a monoid, K a field. For s in S, let r_s and l_s denote right and left multiplication by s in S. A function $f: S \to K$ is called representative if the right translates $s \cdot f = f_{r_s}$ of f for s in S span a finite-dimensional K-vector space. Let $R(S)$ denote the set of representative functions on S. $R(S)$ is a bialgebra (Hopf algebra, possibly without an antipode). R is a contravariant functor from monoids to bialgebras. We called S representable in [T I] if $R(S)$ separates points in S. In this note, we study the class of representable monoids. See [H] for a discussion of representative functions. There S is a group, but the basic ideas carry over for S a monoid.

There is a close relationship between representable monoids and proper algebras. Recall that an algebra A is called proper if there are enough linear functions representative with respect to the multiplicative monoid structure of A to separate points of A. See [S], [T I] and [T II] for alternate characterizations of proper algebras. We show here that S is representable if and only if the monoid algebra $K[S]$ is proper. We use this result to show that the coproduct of two representable monoids is representable.

The author would like to thank George Bergman for some valuable suggestions, particularly in the proof of Theorem 8. We also acknowledge NSF support under grant number MCS76-06362.

2. The class of representable monoids. $K[S]$ will denote the monoid algebra of S over K.

Lemma 1. S is representable if and only if for any $s \neq t$ in S, there is a representation ρ of S on a finite-dimensional K-vector space for which $\rho(s) \neq \rho(t)$.

Proof. Let S be representable, and $s \neq t$ in S. Choose f in $R(S)$ with $f(s) \neq f(t)$. Then $K[S] \cdot f$, the span of the right translates of f by elements of
S is a (left)$K[S]$-module which is finite-dimensional over K. $(s \cdot f)(1) = f(s)$ and $(t \cdot f)(1) = f(t)$, so $s \cdot f \neq t \cdot f$ and $\rho(s) \neq \rho(t)$, where ρ is the representation of S on $K[S] \cdot f$. Conversely, for $s \neq t$ in S, let ρ be a representation of S on a finite-dimensional space V so that $\rho(s) \neq \rho(t)$. If p_y is a coordinate function on $\text{Hom}_K(V, V)$ separating $\rho(s)$ and $\rho(t)$, then $p_y \rho$ is a representative function on S separating s and t. This follows from the formula for matrix multiplication. For if a, b are in S, then

$$(p_y \rho a)(b) = p_y(ba) = p_y(\rho(b) \rho(a)) = \sum_k (p_{ik} \rho(b))(p_{ik} \rho(a)).$$

Thus $p_y \rho a = \sum_k (p_{ik} \rho(a))(p_{ik} \rho)$ lies in the span of the $p_{ik} \rho$.

We included Lemma 1 for completeness. The idea is that $R(S)$ consists of all coordinate functions arising from finite-dimensional representations of S. See [H, pp. 14–15], for a discussion of this.

Proposition 2. A submonoid of a representable monoid is representable.

Proof. This is clear by restriction of finite-dimensional representations.

Proposition 3. Let $\{S_i | i \in I\}$ be a collection of monoids. Then $S = \prod_{i} S_i$ is representable if and only if each S_i is representable.

Proof. If S is representable, then each S_i is representable by Proposition 2. Conversely let each S_i be representable. For $s \neq t$ in S, let p_j be a projection of S onto S_j for which $p_j(s) \neq p_j(t)$. Let $f \in R(S_j)$, $f(p_j(s)) \neq f(p_j(t))$. Then fp_j is in $R(S)$ and separates s and t.

Corollary 4. A direct sum (weak direct product) of monoids $\{S_i | i \in I\}$ is representable if and only if each S_i is representable.

Proof. This follows from Propositions 2 and 3.

Lemma 5. Let A be a K-algebra which is an integral domain. Let $\{a_i | 1 \leq i \leq n\}$ be distinct elements of A. Then the elements $\{(1, a_i, a_i^2, \ldots, a_i^{n-1}) | 1 \leq i \leq n\}$ of A^n are linearly independent over K.

Proof. By the Vandermonde determinant, $\{(1, a_i, a_i^2, \ldots, a_i^{n-1}) | 1 \leq i \leq n\}$ are linearly independent over A, hence also over K.

Lemma 6. Let V be a vector space over K. For $i > 0$, let $V^{(i)}$ denote $V \otimes V \otimes \cdots \otimes V$ (i factors). If v_1, \ldots, v_n are distinct elements of V, then the elements $\{(1, v_i, v_i \otimes v_i, \ldots, v_i \otimes \cdots \otimes v_i) | 1 \leq i \leq n\}$ of $K \oplus V \oplus V^{(2)} \oplus \cdots \oplus V^{n-1}$ are linearly independent over K.

Proof. Let $S^{(i)}$ denote the ith symmetric tensor product of V. Then the elements $\{(1, v_i, v_i^2, \ldots, v_i^{n-1}) | 1 \leq i \leq n\}$ of the symmetric algebra $S(V)$ are linearly independent over K by Lemma 5. Since $S(V)$ is a homomorphic image of the tensor algebra $T(V)$, the elements $\{(1, v_i, v_i \otimes v_i, \ldots, v_i \otimes \cdots \otimes v_i) | 1 \leq i \leq n\}$ of $T(V)$ are also linearly independent over K.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 7. Let W be a finite-dimensional vector space over K. Let $\{T_i\,|\,1 < i < n\}$ be distinct elements of $V = \text{Hom}_K(W, W)$. For $1 < i < n$, let \tilde{T}_i denote the diagonal extension of T_i to $\text{Hom}_K(X, X)$, where $X = K \oplus W \oplus W^{(2)} \oplus \cdots \oplus W^{(n-1)} \subset T(W)$. Then $\{\tilde{T}_i\,|\,1 < i < n\}$ are linearly independent over K.

Proof. By Lemma 6, $\{(1, T_1, T_1 \otimes T_2, \ldots, T_1 \otimes \cdots \otimes T_n)\,|\,1 < i < n\}$ of $K \oplus V \oplus V^{(2)} \oplus \cdots \oplus V^{(n-1)}$ are linearly independent over K. Identifying $(\text{hom}_K(W, W))^{(j)}$ with $\text{Hom}_K(W^{(j)}, W^{(j)})$ for $0 < j < n - 1$, the element $(1, T_i, T_i \otimes T_j, \ldots, T_i \otimes \cdots \otimes T_n)$ corresponds to \tilde{T}_i. Thus $\{\tilde{T}_i\,|\,1 < i < n\}$ are linearly independent over K.

Theorem 8. A monoid S is representable if and only if the monoid algebra $K[S]$ is proper.

Proof. If $K[S]$ is proper, then S is representable by Proposition 3.6 of [TI]. Conversely, let S be representable. Let $\alpha_1s_1 + \cdots + \alpha_ns_n$ be a nonzero element of $K[S]$, where s_1, \ldots, s_n are distinct in S, and $\alpha_1, \ldots, \alpha_n$ are nonzero elements of K. For $i \neq j$, $1 < i, j < n$, let ρ_{ij} be a representation of S on a finite-dimensional vector space V_{ij} for which $\rho_{ij}(s_i) \neq \rho_{ij}(s_j)$. Set $V = \Sigma_{ij=1}^n \oplus V_{ij}$, and $\rho = \Sigma_{i,j=1}^n \oplus \rho_{ij}$. Then V is finite-dimensional over K and $\rho(s_i) \neq \rho(s_j)$ for $i \neq j$, $1 < i, j < n$. Let $\tilde{\rho}$ be the diagonal extension of ρ to a representation of S and $K[S]$ on the space $W = K \oplus V \oplus V^{(2)} \oplus \cdots \oplus V^{(n-1)}$. Then $\{\tilde{\rho}(s_i)\,|\,1 < i < n\}$ are linearly independent by Lemma 7. Hence $\tilde{\rho}(\Sigma_{i=1}^n \alpha_is_i) = \Sigma_{i=1}^n \alpha_i\tilde{\rho}(s_i) \neq 0$ in $\text{Hom}_K(W, W)$. Hence the kernel of $\tilde{\rho}$ is a cofinite ideal of $K[S]$ not containing $\Sigma_{i=1}^n \alpha_is_i$. Hence $K[S]$ is proper by Lemma 6.1.0 of [S].

Corollary 9. If S is a residually finite monoid, then $K[S]$ is a proper algebra.

Proof. We show S is representable, so that the result follows from Theorem 8. Let $s \neq t$ in S. Let $\rho : S \to H$ be a homomorphism of S to a finite monoid H so that $\rho(s) \neq \rho(t)$. ρ induces a representation $\tilde{\rho}$ of S on $K[H]$ by left translation. $\tilde{\rho}(s)(1) = \rho(s) \neq \rho(t) = \tilde{\rho}(t)(1)$, so $\tilde{\rho}(s) \neq \tilde{\rho}(t)$.

If G is a residually finite group, then it is residually finite as a monoid, and so $K[G]$ is a proper algebra. This was noted by A. Rosenberg in Theorem 2 of [ROS].

Theorem 10. Let S and T be representable monoids. Then the free product $S \ast T$ is a representable monoid.

Proof. $K[S]$ and $K[T]$ are proper by Theorem 8. Hence $K[S] \ast K[T]$ (the free product of algebras) is proper by Proposition 3.4.2 of [TIII]. But $K[S] \ast K[T] = K[S \ast T]$. Hence $S \ast T$ is representable by Theorem 8.

We conclude by noting that the class of representable monoids is not closed under homomorphic images. This was pointed out in Proposition 2.6 of [TI] if K is a finite field, but we give examples here for any field K. First
note that any free monoid is representable by Proposition 2.5 of [T I]. Hence it suffices to exhibit a nonrepresentable monoid. Let G be a finitely-generated infinite simple group. For examples of such, see §5.1 of [ROB]. We claim that $R(G) = K$, the constant functions on G, so that G is not representable. Let ρ be a (monoid) representation of G on a finite-dimensional vector space of dimension n. $\rho(G)$ is a linear group of n by n matrices over K. Since G is a simple group, ρ is either one-to-one or trivial. If ρ is one-to-one, then $\rho(G)$ is a finitely-generated infinite linear group. By Malcev's theorem (see Corollary 4.4(ii) of [W]), $\rho(G)$ is not simple. Hence ρ is trivial, i.e. a one-dimensional representation. It follows that $R(G) = K$.

References

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903