Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of a theorem of Tatchell


Author: Niranjan Singh
Journal: Proc. Amer. Math. Soc. 70 (1978), 49-56
MSC: Primary 40G99
DOI: https://doi.org/10.1090/S0002-9939-1978-0487556-6
MathSciNet review: 487556
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions for $ \Sigma {a_n}{\varepsilon _n}$ to be summable $ \vert A,{\lambda _n}\vert$, whenever $ \Sigma {a_n}$ is convergent, have been obtained. The sufficiency part of this result has also been improved.


References [Enhancements On Off] (What's this?)

  • [1] G. H. Hardy, Divergent series, Oxford Univ. Press, London, 1949. MR 0030620 (11:25a)
  • [2] M. W. Orlicz, Beitrage zur Theorie der Orthogonalentwicklungen. II, Studia Math. 1 (1929), 241-255.
  • [3] J. B. Tatchell, A note on a theorem by Bosanquet, J. London Math. Soc. 29 (1954), 207-211. MR 0060611 (15:697f)
  • [4] -, On some integral transforms, Proc. London Math. Soc. 3 (1953), 257-267. MR 0056727 (15:118f)
  • [5] P. Dienes, The Taylor series, Dover, New York, 1957, p. 396. MR 0089895 (19:735d)
  • [6] H. H. Körle, Über Unsteige absolute Riesz-Summujung. I, II, Math. Ann. 176 (1968), 45-52; ibid. 177 (1968), 230-234.
  • [7] J. S. Ratti, Tauberian theorems for absolute summability, Proc. Amer. Math. Soc. 18 (1967), 775-781. MR 0216202 (35:7037)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40G99

Retrieve articles in all journals with MSC: 40G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0487556-6
Keywords: $ (A,{\lambda _n})$ summability, Banach space, linear functionals and Riesz means
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society