Group actions on homology quaternionic projective planes

Author:
Steven H. Weintraub

Journal:
Proc. Amer. Math. Soc. **70** (1978), 75-82

MSC:
Primary 57E25

DOI:
https://doi.org/10.1090/S0002-9939-1978-0515869-8

MathSciNet review:
0515869

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A class of -actions, resembling well-known actions on the quaternionic projective plane, is defined and studied. The existence of such actions on a closed homology quaternionic projective plane is shown to imply numerical restrictions on the manifold's Pontrjagin classes. One consequence is that for , or 5, infinitely many smooth manifolds of this type admit no smooth -actions.

**[1]**M. F. Atiyah and I. M. Singer,*The index of elliptic operators*.III, Ann. of Math. (2)**87**(1968), 546-604. MR**0236952 (38:5245)****[2]**G. Bredon,*Introduction to compact transformation groups*, Academic Press, New York, 1972. MR**0413144 (54:1265)****[3]**W. Browder, T. Petrie and C. T. C. Wall,*The classification of free actions of cyclic groups of odd order on homotopy spheres*, Bull. Amer. Math. Soc.**77**(1971), 455-459. MR**0279826 (43:5547)****[4]**I. J. Dejter,*Smooth**manifolds in the homotopy type of*, Michigan Math. J.**23**(1976), 83-95. MR**0402789 (53:6603)****[5]**J. Eells and N. Kuiper,*Manifolds which are like projective planes*, Inst. Hautes Etudes Sci. Publ. Math. No. 14, 1962, pp. 5-46. MR**0145544 (26:3075)****[6]**C. N. Lee,*Cyclic group actions on homotopy spheres*, (Proc. Conf. Transformation Groups, New Orleans, 1967), Springer, New York, 1968, p. 207. MR**0245039 (39:6351)****[7]**S. Weintraub,*Semi-free*-*actions on highly-connected manifolds*, Math. Z.**145**(1975), 163-185. MR**0400268 (53:4103)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57E25

Retrieve articles in all journals with MSC: 57E25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0515869-8

Keywords:
Cyclic group actions,
quaternionic projective plane

Article copyright:
© Copyright 1978
American Mathematical Society