Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Markov property of extremal local fields


Authors: N. Dang-Ngoc and G. Royer
Journal: Proc. Amer. Math. Soc. 70 (1978), 185-188
MSC: Primary 60J99; Secondary 60K35
MathSciNet review: 0478385
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that extremal local field on $ {(E,\mathcal{E})^T}$, with $ T = {\mathbf{Z}}$ or R and $ (E,\mathcal{E})$ standard, possesses the Markov property. This result generalizes that of F. Spitzer in the case $ T = {\mathbf{Z}}$, E countable and a result of G. Royer and M. Yor on extremal measures associated to certain diffusion processes.


References [Enhancements On Off] (What's this?)

  • [1] N. Dang Ngoc and M. Yor, Champs markoviens et mesures de Gibbs sur 𝑅, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 1, 29–69 (French, with English summary). MR 504421
  • [2] H. Föllmer, Phase transition and Martin boundary, Séminaire Probabilités Strasbourg IX, Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1976.
  • [3] Jacques Neveu, Bases mathématiques du calcul des probabilités, Préface de R. Fortet. Deuxième édition, revue et corrigée, Masson et Cie, Éditeurs, Paris, 1970 (French). MR 0272004
  • [4] G. Royer and M. Yor, Représentation intégrale de certaines mesures quasi-invariantes sur \cal𝐶(𝑅); mesures extrémales et propriété de Markov, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 2, ix, 7–24 (French, with English summary). MR 0447517
  • [5] Frank Spitzer, Phase transition in one-dimensional nearest-neighbor systems, J. Functional Analysis 20 (1975), no. 3, 240–255. MR 0388583

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60J99, 60K35

Retrieve articles in all journals with MSC: 60J99, 60K35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0478385-8
Keywords: Markov field, local Markov field, Markov process, Markov property, Gibbs state
Article copyright: © Copyright 1978 American Mathematical Society