AN INEQUALITY FOR GENERALIZED QUADRANGLES

STANLEY E. PAYNE

Abstract. Let S be a generalized quadrangle of order (s, t). Let X and Y be disjoint sets of pairwise noncollinear points of S such that each point of X is collinear with each point of Y. If $m = |X|$ and $n = |Y|$, then $(m - 1)(n - 1) < s^2$. When equality holds, severe restrictions are placed on m, n, s, and t.

I. Prolegomena. A generalized quadrangle of order (s, t), $s > 1$, $t > 1$, is a point-line incidence geometry $S = (\mathcal{P}, \mathcal{L}, I)$ with point set \mathcal{P}, line set \mathcal{L}, and symmetric point-line incidence relation I satisfying the following axioms:

A1. No two points are incident with two lines in common.

A2. If x is a point not incident with a line L, then there is a unique point y incident with L and collinear with x.

A3. Each line (respectively, point) is incident with $1 + s$ points (respectively, $1 + t$ lines).

Throughout this note $S = (\mathcal{P}, \mathcal{L}, I)$ will denote a generalized quadrangle (GQ) of order (s, t), $s > 1$, $t > 1$. Let $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ be disjoint sets of pairwise noncollinear points of S, $m \geq 2$ and $n \geq 2$. Let k_i be the number of x_i's with which y_i is collinear, $1 \leq i \leq n$, $0 \leq k_i \leq m$. Our main results consist of the following two theorems.

Theorem 1.1.

$$(1 + s) \sum_{i=1}^{n} k_i < mn + \sqrt{m^2n^2 + (s^2 - 1)(m + n)mn + (s^2 - 1)^2 mn}.$$

Theorem 1.2. Let $k_i = m$ for all i, i.e. each y_i is collinear with each x_j. Then $(m - 1)(n - 1) < s^2$. If equality holds, then one of the following must occur.

(i) $m = n = 1 + s$, and each point of $Z = \mathcal{P} \setminus (X \cup Y)$ is collinear with precisely two points of $X \cup Y$.

(ii) $m \neq n$. If $m < n$, then $s \mid t$, $s < t$, $n = 1 + t$, $m = 1 + s^2 / t$, and each point of S is collinear with either 1 or $1 + t/s$ points of Y according as it is or is not collinear with some point of X. Note: $(m - 1) | s$.

There are two corollaries that deserve mention.

Corollary 1.3. If there is a GQ S with order (s, t), $s > 1$, then $t < s^2$. If $t = s^2$, then each triad of points has exactly $1 + s$ centers.

Received by the editors February 14, 1977.

Key words and phrases. Generalized quadrangles, Rayleigh quotient, incidence matrix.

© American Mathematical Society 1978
Proof. The inequality \(t \leq s^2 \) is due to D. G. Higman ([3], [4]). Alternate treatments appear in Bose [1] and Cameron [2]. In the present setting a proof is obtained by putting \(X = \{x_1, x_2\} \) where \(x_1 \) and \(x_2 \) are not collinear, \(Y = \text{tr}(X) \) = the set of 1 + \(t \) points collinear with both \(x_1 \) and \(x_2 \), and then applying Theorem I.2. □

Corollary I.4. Let \(x \) and \(y \) be noncollinear points of \(\mathcal{S} \) with \(s > 1 \) and \(|\text{sp}(x, y)| = 1 + p\). Then \(pt \leq s^2 \). If \(pt = s^2 \) and \(p < t \), then each point \(z \) collinear with no point of \(\text{sp}(x, y) \) must be collinear with exactly \(1 + t/s \) points of \(\text{tr}(x, y) \).

Proof. For the original proof and an explanation of the notation see Thas [7]. In the present setting put \(X = \text{sp}(x, y) \), \(Y = \text{tr}(x, y) \). □

The proofs depend on a general matrix theoretic approach due to Sims. As the treatment in [5] does not include the “case of equality,” we first give an exposition of this method.

II. A matrix-theoretic technique. If \(\vec{x} = (x_1, \ldots, x_n)^T \) and \(\vec{y} = (y_1, \ldots, y_n)^T \) are column vectors of real numbers, then \(\vec{x} \cdot \vec{y} = \sum x_i y_i \) denotes their usual dot product. If \(A \) is a real, symmetric, \(n \times n \) matrix, then for each \(\vec{x} \neq 0 \) define the Rayleigh quotient \(R(\vec{x}) \) for \(A \) by

\[
R(\vec{x}) = \frac{\vec{x} \cdot A \vec{x}}{\vec{x} \cdot \vec{x}}. \tag{1}
\]

It is well known that \(A \) has real characteristic roots, say \(\mu_1 \leq \cdots \leq \mu_n \), and that

\[
\mu_1 = \min_{\vec{x}: \vec{x} \neq 0} R(\vec{x}) \leq \max_{\vec{x}: \vec{x} \neq 0} R(\vec{x}) = \mu_n. \tag{2}
\]

Perhaps not so well known is the following.

II.1. Let \(\vec{x} \) be a nonzero vector in \(\mathbb{R}^n \) for which \(R(\vec{x}) = \mu_i \) for either \(i = 1 \) or \(i = n \). Then \(\vec{x} \) is a characteristic vector of \(A \) belonging to the characteristic value \(\mu_i \).

Proof. Let \(\vec{x}_1, \ldots, \vec{x}_n \) be an orthonormal basis of characteristic vectors of \(A \) ordered so that \(A \vec{x}_i = \mu_i \vec{x}_i \). Let \(\vec{x} \) be an arbitrary nonzero vector of \(\mathbb{R}^n \) normalized so that \(\vec{x} \cdot \vec{x} = 1 \). Then \(R(\vec{x}) = \vec{x} \cdot A \vec{x} \) and \(\vec{x} = \sum c_i \vec{x}_i \) with \(\sum c_i^2 = 1 \). Hence \(\mu_1 = \mu_1 \cdot \sum c_i^2 \leq \sum c_i^2 \mu_i = \vec{x} \cdot A \vec{x} = R(\vec{x}) \), with equality holding if and only if \(\mu_i = \mu_i \) whenever \(c_i \neq 0 \). It follows that \(R(\vec{x}) = \mu_1 \) if and only if \(\vec{x} \) belongs to the eigenspace associated with \(\mu_1 \). The argument for \(\mu_n \) is similar. □

We continue to let \(A = (a_{ij}) \) denote an \(n \times n \) real symmetric matrix. Let \(\Delta = \Delta_1 + \cdots + \Delta_s \) and \(\Gamma = \Gamma_1 + \cdots + \Gamma_s \) be partitions of \(\{1, \ldots, n\} \). Suppose that \(\Gamma \) is a refinement of \(\Delta \), and write \(i \subseteq j \) whenever \(\Gamma_i \subseteq \Delta_j \), \(1 \leq i \leq s \), \(1 \leq j \leq r \). Put \(\delta_i = |\Delta_i|, \gamma_i = |\Gamma_i| \). Let

\[
\delta_{ij} = \sum_{\mu \in \Delta_i} a_{\mu \nu}, \quad \gamma_{ij} = \sum_{\mu \in \Gamma_i \wedge \nu \in \Gamma_j} a_{\mu \nu}.
\]
So $\delta_j = \delta_i$ and $\gamma_{ij} = \gamma_{ij}$ by the symmetry of A. Define the following matrices:

$$A^\Delta = \begin{pmatrix} \delta_{ij} \\ \delta_i \end{pmatrix}_{1 < i, j < r}, \quad A^\Gamma = \begin{pmatrix} \gamma_{ij} \\ \gamma_i \end{pmatrix}_{1 < i, j < s}.$$

$$\tilde{A}_\Delta = \text{diag}(\sqrt{\delta_1}, \ldots, \sqrt{\delta_r}); \quad \tilde{A}_\Gamma = \text{diag}(\sqrt{\gamma_1}, \ldots, \sqrt{\gamma_s}).$$

$$\hat{A}_\Delta = \tilde{A}_\Delta A^\Delta (\tilde{A}_\Delta)^{-1} = \begin{pmatrix} \delta_{ij} \\ \delta_i \delta_j \end{pmatrix}_{1 < i, j < r},$$

$$\hat{A}_\Gamma = \tilde{A}_\Gamma A^\Gamma (\tilde{A}_\Gamma)^{-1} = \begin{pmatrix} \gamma_{ij} \\ \gamma_i \gamma_j \end{pmatrix}_{1 < i, j < s}.$$

Hence \hat{A}_Δ and \hat{A}_Γ are real symmetric matrices with real characteristic values equal to those of A^Δ and A^Γ, respectively. The smallest and largest characteristic roots of \hat{A}_Γ and \hat{A}_Δ are the minimum and maximum, respectively, of $(\tilde{x} \cdot \hat{A}_\Gamma \tilde{x})/(\tilde{x} \cdot \tilde{x})$ and $(\tilde{y} \cdot \hat{A}_\Delta \tilde{y})/(\tilde{y} \cdot \tilde{y})$, $\tilde{x} \neq \tilde{x} \in R^r$, $\tilde{y} \neq \tilde{y} \in R^s$.

Let $\tilde{y} = (y_1, \ldots, y_r)^T \in R^r$. Then put $\tilde{x} = (\ldots, x_a, \ldots)^T$, where $x_a = y_{i_a} \sqrt{\gamma_{i_a}/\delta_i}$ whenever $a \in i$, $1 \leq a \leq s$. Then

$$\sum_{a=1}^s x_a^2 = \sum_{i=1}^r \left(\sum_{a \in i} \left(y_{i_a} \sqrt{\gamma_{i_a}/\gamma_i} \right)^2 \right) = \sum_{i=1}^r \frac{y_i^2}{\delta_i} \left(\sum_{a \in i} \gamma_{i_a} \right) = \sum_{i=1}^r y_i^2,$$

implying $\tilde{x} \cdot \tilde{x} = \tilde{y} \cdot \tilde{y}$. And

$$\tilde{x} \cdot \hat{A}_\Gamma \tilde{x} = \sum_{a, \beta = 1}^s x_a \frac{\gamma_{a\beta}}{\sqrt{\gamma_a \gamma_\beta}} x_\beta = \sum_{i, j = 1}^r \left[\sum_{a \in i, \beta \in j} \frac{\gamma_{a\beta}}{\sqrt{\gamma_a \gamma_\beta}} \cdot \frac{y_i \sqrt{\gamma_a}}{\sqrt{\delta_i}} \cdot \frac{y_j \sqrt{\gamma_\beta}}{\sqrt{\delta_j}} \right],$$

$$= \sum_{i, j = 1}^r y_i \left[\sum_{\beta \in j} \frac{\gamma_{a\beta}}{\sqrt{\delta_i \delta_j}} \right] y_j = \tilde{y} \cdot \hat{A}_\Delta \tilde{y}.$$

This implies that any value of $(\tilde{y} \cdot \hat{A}_\Delta \tilde{y})/(\tilde{y} \cdot \tilde{y})$ is also a value of $(\tilde{x} \cdot \hat{A}_\Gamma \tilde{x})/(\tilde{x} \cdot \tilde{x})$. Hence the following is a corollary of (2) and I.I.

II.2. If $\mu_1 \leq \cdots \leq \mu_r$ are the characteristic roots of A^Δ and $\lambda_1 \leq \cdots \leq \lambda_s$ are the characteristic roots of A^Γ, then $\lambda_1 < \mu_1 < \mu_s < \lambda_s$. If $\tilde{y} = (y_1, \ldots, y_r)^T$ satisfies $A^\Delta \tilde{y} = \lambda_1 \tilde{y}$ (so $\lambda_1 = \mu_1$), then $A^\Gamma \tilde{x} = \lambda_1 \tilde{x}$, where $\tilde{x} = (\ldots, x_a, \ldots)^T$ is defined by $x_a = y_{i_a}$ whenever $a \in i$. A similar result holds in case $\lambda_n = \mu_n$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
PROOF. The first part of the result is evident. So let \(\tilde{0} \neq \tilde{y} = (y_1,\ldots,y_r)^T \) satisfy \(A_{\Delta} \tilde{y} = \lambda_1 \tilde{y} = \mu_1 \tilde{y} \). Then \(A_{\Delta} \tilde{y} = (y_1\sqrt{\delta_1},\ldots,y_r\sqrt{\delta_r})^T \) is a characteristic vector of \(\hat{A}_{\Delta} \) belonging to \(\lambda_1 = \mu_1 \). Hence \(\tilde{z} = (\ldots,z_a,\ldots)^T \), \(z_a = y_1\sqrt{\gamma_a} \) for \(a \subseteq i \), is a characteristic vector of \(\hat{A}_r \) belonging to \(\lambda_1 \) (by the proof of II.1). It follows that \(\tilde{z} \) as given in the statement of II.2 is a characteristic vector of \(A^\Gamma \) associated with \(\lambda_1 \). A similar proof holds in case \(\lambda_n = \mu_n \). □

III. Applications to generalized quadrangles. Let \(S = (\mathcal{P}, \mathcal{L}, I) \) be a GQ of order \((s, t)\). Let \(X \) and \(Y \) be as in the hypothesis of Theorem 1.1, and put \(Z = \mathcal{P} \setminus (X \cup Y) \), so \(|Z| = r = v - (m + n) \), where \(v = (1 + s)(1 + st) = |\mathcal{P}| \). For some ordering of \(\mathcal{P} \) let \(A \) be the \((0, 1)\)-matrix \(A = (a_{ij}) \) defined by \(a_{ij} = 1 \) if the \(i \)th and \(j \)th points of \(\mathcal{P} \) are not collinear in \(S \); \(a_{ij} = 0 \) otherwise. It follows that \(A \) is symmetric with minimum polynomial given by \(f(x) = (x + s)(x - t)(x - ts^2) \). Let \(\Delta = \Delta_1 + \Delta_2 + \Delta_3 \) be the partition of \(\{1, \ldots, v\} \) determined by \(X, Y, \) and \(Z \); i.e. points of \(X, Y, Z \), respectively, are indexed by \(\Delta_1, \Delta_2, \Delta_3 \), respectively. As \(\delta_i = |\Delta_i| \), we have \(\delta_1 = m, \delta_2 = n, \delta_3 = v - (m + n), \delta_{11} = n(n - 1), \delta_{12} = \delta_{21} = \sum_{k=1}^n (m - k)mn = \Sigma, \) where \(\Sigma = \sum_{k=1}^n k \). Since \(\sum_{j=1}^n (\delta_j/\delta_i) = ts^2 \), we also have \(\delta_{13} = \delta_{1}ts^2 - \delta_{12} - \delta_{11} = ts^2m - (mn - \Sigma) - m(m - 1) \). Similarly, \(\delta_{23} = ts^2n - (mn - \Sigma) - n(n - 1) \). Using these results it is now routine to complete the calculation of \(A^\Delta \).

\[
A^\Delta = \begin{bmatrix}
m - 1 & n - \Sigma/m & ts^2 + 1 - m - n + \Sigma/m \\
m - \Sigma/n & n - 1 & ts^2 + 1 - m - n + \Sigma/n \\
A_1 & A_2 & A_3
\end{bmatrix}
\]

where

\[
A_1 = \frac{m[ts^2 + 1 - m - n] + \Sigma}{v - m - n}, \quad A_2 = \frac{n[ts^2 + 1 - m - n] + \Sigma}{v - m - n}
\]

and

\[
A_3 = ts^2 - \frac{(m + n)[ts^2 + 1 - m - n] + 2\Sigma}{v - m - n}.
\]

Let \((x - ts^2)(x - r_1)(x - r_2) \) be the characteristic polynomial of \(A^\Delta \) with the roots ordered so that \(r_1 < r_2 < ts^2 \). Let \(\Gamma = \Gamma_1 + \cdots + \Gamma_v \) be the identity partition of \(\{1, \ldots, v\} \), so \(\Gamma \) is a refinement of \(\Delta \). Then \(A^\Gamma = A \) has numerical range \([-s, ts^2]\) which must then contain all characteristic roots of \(A^\Delta \). Indeed, the proof of Theorem 1.1 amounts to calculating \(r_1 \) and using the inequality \(-s < r_1 \). We now proceed to do this.

Put \((x - r_1)(x - r_2) = x^2 - bx + c \), so that \(2r_1 = b - \sqrt{b^2 - 4c} \). Hence \(-s < r_1 \) simplifies to

\[
0 < s^2 + bs + c, \quad b = r_1 + r_2 = \text{tr}(A^\Delta) - ts^2, \quad c = \text{det}(A^\Delta)/ts^2. \tag{4}
\]

It is easy to calculate \(\text{tr}(A^\Delta) \) from (3) and then to write \(b \) as follows.
\[b = \frac{(m + n)(s + st + 2) - 2v - 2\Sigma}{v - m - n}. \] \hspace{1cm} (5)

To calculate \(\det(A^\Delta) \), add the first and second columns of \(A^\Delta \) to the third column and then subtract the first row from the second. At this point \(\det(A^\Delta) \) appears as follows.

\[
\begin{vmatrix}
 m - 1 & 1 - \Sigma/n & 0 \\
 m[ts^2 + 1 - m - n] + \Sigma & n[ts^2 + 1 - m - n] + \Sigma & 1 \\
 v - m - n & v - m - n & 1
\end{vmatrix}
\] \hspace{1cm} (6)

Expanding by the third column and simplifying, one may calculate \(c \) to be as follows.

\[
c = \frac{\det(A^\Delta)}{ts^2} = \frac{(1 + s + st)(2\Sigma - m - n) + v - v\Sigma^2/mn}{v - m - n}. \] \hspace{1cm} (7)

Using the values for \(b \) and \(c \) given in (5) and (7), (4) may be rewritten as follows.

\[0 < (s - 1)(m + n + s^2 - \lambda)mn + 2mn^2 - (1 + \lambda)^22. \] \hspace{1cm} (8)

Equality in (8) gives two roots \(\Sigma_1 \) and \(\Sigma_2 \) for which (8) says \(\Sigma_1 < \Sigma < \Sigma_2 \), if \(\Sigma_1 < \Sigma_2 \). But \(\Sigma_2 \) is easily evaluated.

\[
\Sigma_2 = \frac{mn + \sqrt{m^2n^2 + (s^2 - 1)(m + n)mn + (s^2 - 1)^2mn}}{1 + s}. \] \hspace{1cm} (9)

Clearly \(\Sigma < \Sigma_2 \) is just the inequality in Theorem 1.1. If each \(k_i = m \), then \(\Sigma = mn \), and the inequality of Theorem 1.1 reduces to \((m - 1)(m - 1) < s^2 \), the inequality of Theorem 1.2.

We now use II.2 to investigate the case of equality in Theorem 1.2. Suppose that \(k_i = m \) for all \(i \), so \(\Sigma = mn \), and suppose that \((m - 1)(n - 1) = s^2 \), so \(-s \) is a characteristic root of \(A^\Delta \). Hence a nonzero characteristic vector of \(A^\Delta \) belonging to \(-s \) must span the null space of \(A^\Delta + sI \).

\[
A^\Delta + sI = \begin{pmatrix}
 m - 1 + s & 0 & ts^2 + 1 - m \\
 0 & n - 1 + s & ts^2 + 1 - n \\
 * & * & *
\end{pmatrix}
\] \hspace{1cm} (10)

where we need not bother to calculate the third row, since the rank must equal 2. Clearly \(\vec{y} = (y_1, y_2, 1)^T \) spans the null space of \(A^\Delta + sI \), where

\[
y_1 = \frac{m - 1 - ts^2}{s + m - 1}; \hspace{1cm} y_2 = \frac{n - 1 - ts^2}{s + n - 1}. \] \hspace{1cm} (11)

Let us assume that the points of \(\mathcal{P} \) are ordered (for the construction of \(A \)) so that the first \(m \) points are those of \(X \), the next \(n \) points are those of \(Y \), and the last \(v - m - n \) points are those of \(Z \). Then by II.2, \(\vec{x} \) must be a characteristic vector of \(A^\Gamma = A \) belonging to \(\lambda_1 = -s \), where \(\vec{x} \) is as follows.
\[\bar{x} = \begin{pmatrix} y_1, \ldots, y_1, & y_2, \ldots, y_2, & 1, \ldots, 1 \\ m \times & n \times & (v - m - n \times) \end{pmatrix}^T. \tag{12} \]

For the first \(m + n \) rows of \(A \) this yields no new information. But let \(z \in Z \) be the \(i \)th point, \(i > m + n \). Suppose \(z \) is not collinear with \(t_1 \) points of \(X \), is not collinear with \(t_2 \) points of \(Y \), and hence is not collinear with \(ts^2 - t_1 - t_2 \) points of \(Z \). Then the product of the \(i \)th row of \(A \) with \(\bar{x} \), which must equal \(-s\), is actually \(t_1y_1 + t_2y_2 + ts^2 - t_1 - t_2 = s \). After a little simplification this becomes

\[\frac{t_1}{s + m - 1} + \frac{t_2}{s + n - 1} = 1. \tag{13} \]

If \(z \) lies on a line joining a point of \(X \) and a point of \(Y \), then \(t_1 = m - 1 \) and \(t_2 = n - 1 \), i.e., since \(S \) has no triangles, \(z \) is collinear with a unique point of \(X \) and with a unique point of \(Y \). On the other hand, if \(z \) is not on such a line either \(t_1 = m \) or \(t_2 = n \). Suppose \(t_1 = m \), so \(z \) is collinear with no point \(X \). Using (13) we find that the number of points of \(Y \) collinear with \(z \) is

\[n - t_2 = 1 + (n - 1)/s. \tag{14} \]

Similarly, any point of \(Y \) collinear with no point of \(Y \) must be collinear with \(1 + (m - 1)/s \) points of \(X \). If \(m = n = s + 1 \), this says each point not on a line joining a point of \(X \) with a point of \(Y \) must be collinear with two points of \(X \) and none of \(Y \) or with two of \(Y \) and none of \(X \). If \(1 < m < s + 1 \), so \(1 + (m - 1)/s \) is not an integer, then each point of \(S \) is collinear with some point of \(Y \). This implies that each point \(z \) of \(Z \) is either on a line joining points of \(X \) and \(Y \) or is collinear with \(1 + (n - 1)/s \) points of \(Y \). Clearly \(n < 1 + t \). Suppose \(n < 1 + t \) and let \(x_1 \in X \). Then there is some line \(L \) through \(x_1 \) not incident with any point of \(Y \). But then any point \(z \) on \(L \), \(z \neq x_1 \), cannot be collinear with any point of \(Y \), a contradiction. Hence it must be that \(n = 1 + t \), from which it follows that \(m = 1 + s^2/t \). This essentially completes the proof of Theorem 1.2.

A similar treatment is available for the restriction on the parameters of a subquadrangle, a combinatorial proof of which is found in [6].

REFERENCES

1. R. C. Bose, *Geometric and pseudo-geometric graphs \((q^2 + 1, q + 1, 1) \)*, J. Geometry 2 (1972), 75–93.
7. , *On generalized quadrangles with parameters \(s = q^2 \) and \(t = q^3 \)*, Geometria Dedicata 5 (1976), 485–496.

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056