A REFINEMENT OF THE ARITHMETIC MEAN-
GEOMETRIC MEAN INEQUALITY

D. I. CARTWRIGHT AND M. J. FIELD

Abstract. Upper and lower bounds are given for the difference between the
arithmetic and geometric means of \(n \) positive real numbers in terms of the
variance of these numbers.

In this note we prove a simple refinement of the arithmetic mean-geometric
mean inequality. Our result solves a problem posed by Kenneth S. Williams
in [5] and generalizes an inequality on p. 215 of [3]. Other estimates for the
difference between the means are discussed in [2], [3] and [4].

Theorem. Suppose that \(x_k \in [a, b] \) and \(p_k > 0 \) for \(k = 1, \ldots, n \), where
\(a > 0 \), and suppose that \(\sum_{k=1}^{n} p_k = 1 \). Then, writing \(\bar{x} = \sum_{k=1}^{n} p_k x_k \), we have

\[
\frac{1}{2b} \sum_{k=1}^{n} p_k (x_k - \bar{x})^2 \leq \bar{x} - \left(\prod_{k=1}^{n} x_k^{p_k} \right) \leq \frac{1}{2a} \sum_{k=1}^{n} p_k (x_k - \bar{x})^2. \tag{1}
\]

In particular, if \(p_k = 1/n \) for each \(k \), then

\[
\frac{1}{2bn^2} \sum_{j<k} (x_j - x_k) \leq \frac{x_1 + \cdots + x_n}{n} - \left(\prod_{j=1}^{n} x_j \right)^{1/n} \leq \frac{1}{2an^2} \sum_{j<k} (x_j - x_k)^2.
\]

Remark. These inequalities may be generalized as follows: Let \(m \) be a
probability measure on \([a, b]\), where \(a > 0 \), and let \(\mu = \int_a^b t \, dm(t) \) and
\(\sigma^2 = \int_a^b (t - \mu)^2 \, dm(t) \) be the mean and variance of \(m \). Then

\[
\frac{1}{2b} \sigma^2 \leq \mu - \exp \left(\int_a^b \log(t) \, dm(t) \right) \leq \frac{1}{2a} \sigma^2.
\]

This follows from our theorem and the weak* density of the measures of the form \(\sum_{k=1}^{n} p_k \delta_{x_k} \) (where \(\delta_x \) denotes the probability measure which is
concentrated at the point \(x \)) in the set of all probability measures on \([a, b]\).
(See [1, p. 709].) Notice that the inequality

\[
\exp \left(\int_a^b \log(t) \, dm(t) \right) \leq \mu
\]
Lemma. Let $0 < q < 1$. Then for all $t > 0$ we have

$$1 + qt + \frac{q(q - 1)}{2} t^2 < (1 + t)^q < 1 + qt + \frac{q(q - 1)}{2} \frac{t^2}{1 + t}.$$

Proof. After a little algebra we see that

$$\frac{d}{dt} \log \left(1 + qt + \frac{q(q - 1)}{2} \frac{t^2}{1 + t} \right) = \frac{q}{1 + t} \left\{ \frac{2 + (2 + 2q)t + (1 + q)t^2}{2 + (2 + 2q)t + q(1 + q)t^2} \right\}$$

$$> \frac{q}{1 + t} \text{ since } 0 < q < 1$$

$$= \frac{d}{dt} \log(1 + t)^q.$$

Since $(1 + t)^q$ and $1 + qt + (q(q - 1)/2)(t^2/(1 + t))$ agree at $t = 0$, the right-hand inequality is proved.

The left-hand inequality may be proved in the same way, or by using the Taylor expansion of $(1 + t)^q$.

Proof of the theorem. The inequalities (1) are trivially valid if $n = 1$. Let $n = 2$. We may suppose that $x_2 > x_1$. Writing $x_2 = (1 + t)x_1$, with $t > 0$, and writing $p_2 = q$, $p_1 = 1 - q$, the desired inequalities (1) become

$$\frac{q(1 - q)}{2b} t^2 x_1^2 < x_1 \left(1 + qt - (1 + t)^q \right) < \frac{q(1 - q)}{2a} t^2 x_1^2,$$

which follows immediately from our lemma, noting that $a < x_1 < (1 + t)x_1 < b$.

Suppose now that $n > 3$ and that the inequalities (1) have been proved for all admissible x_k's and p_k's with $n - 1$ replacing n.

Fix x_1, \ldots, x_n. We may assume that the x_k's are distinct, for otherwise the inequalities follow from the induction hypothesis. Let us consider the left-hand inequality. Define

$$f(p) = f(p_1, \ldots, p_n) = \bar{x} - \prod_{k=1}^n (x_k^p) - \frac{1}{2b} \sum_{k=1}^n p_k (x_k - \bar{x})^2$$

for $p \in S = \{ p = (p_1, \ldots, p_n); p_k > 0 \text{ for each } k \}$.

There is a point p^o of S where f is minimized subject to the constraint $\sum p_k = 1$. If p^o lies on the boundary of S, then some component of p^o is zero, and hence $f(p^o) > 0$ by the induction hypothesis, and so the left-hand inequality holds.

If p^o is an interior point of S, then we may use the Lagrange multiplier method to obtain a real number λ such that at p^o,

$$\frac{\partial f}{\partial p_j} = \lambda \frac{\partial}{\partial p_j} \left(\sum_{k=1}^n p_k - 1 \right) \text{ for all } j.$$
i.e.

\[x_j - (\log x_j) \prod_{1}^{n} (x_k^b) - \frac{(x_j - \bar{x})^2}{2b} = \lambda. \]

Thus each \(x_j \) is a solution of the equation (in \(\xi \))

\[(1 + \frac{\bar{x}}{b})\xi - \bar{x} \log (\xi) - \xi^2 / 2b = \lambda + \bar{x}^2 / 2b \tag{2}\]

(writing \(\bar{x} \) for \(\prod(x_k^b) \)).

Now between any two roots of (2) there is by Rolle’s theorem a root of

\[1 + \frac{\bar{x}}{b} - \frac{\bar{x}}{\xi} - \frac{\xi}{b} = 0, \]

i.e. of

\[\xi^2 - (b + \bar{x})\xi + b\bar{x} = 0. \tag{3} \]

Since (3) has at most 2 solutions, equation (2) has at most 3 solutions. The larger root of (3) is, since \(\bar{x} < \bar{x} \),

\[\left(b + \bar{x} + \sqrt{(b + \bar{x})^2 - 4b\bar{x}} \right) / 2 > b. \]

Hence equation (2) has at most 2 solutions in \([a, b] \). Since each \(x_j \) is a solution and since the \(x_j \)'s are distinct, we must have \(n < 2 \), contrary to assumption.

Thus \(p^o \) must be a boundary point of \(S \), and so the left-hand inequality is proved.

The right-hand inequality may be proved in the same way by replacing \(b \) by \(a \) in the definition of \(f \) and by noting that the smaller root of the equation corresponding to (3) is \(< a \).

Remark. Examination of the above proof shows that the inequalities in (1) are strict unless the \(x_k \)'s corresponding to nonzero \(p_k \)'s are all equal. Furthermore, the constants \(1/2a \) and \(1/2b \) in (1) are the best possible. For in the case \(n = 2 \) we have

\[\frac{\bar{x} - \prod(x_k^a)}{\sum p_k (x_k - \bar{x})^2} = \frac{1 + qt - (1 + t)^q}{q(1 - q)^2x_1} \]

if \(0 < q < 1 \) and \(t > 0 \) (in the notation of the first paragraph of the proof). It is easy to see that the limit of this expression as \(t \) tends to zero is \(1/2x_1 \), and since \(x_1 \in [a, b] \) is arbitrary, the result follows.

References