Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Entire functions with almost radially distributed values

Author: Shigeru Kimura
Journal: Proc. Amer. Math. Soc. 71 (1978), 73-78
MSC: Primary 30A70
MathSciNet review: 0486525
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f(z)$ be an entire function of finite lower order. Assume that there exist a positive number h and an unbounded sequence $ \{ {w_n}\} _{n = 1}^\infty $ such that all roots of the equations $ f(z) = {w_n}(n = 1,2, \ldots )$ lie in $ \{ z;\vert\operatorname{Im} z\vert < h\} $. Then $ f(z)$ is a polynomial of degree not greater than two. The hypothesis of the finiteness of lower order of $ f(z)$ cannot be removed.

References [Enhancements On Off] (What's this?)

  • [1] A. Edrei, Meromorphic functions with three radially distributed values, Trans. Amer. Math. Soc. 78 (1955), 276-293. MR 0067982 (16:808d)
  • [2] -, The deficiencies of meromorphic functions of finite lower order, Duke Math. J. 31 (1964), 1-22. MR 0158079 (28:1306)
  • [3] A. Edrei and W. H. G. Fuchs, Bounds for the number of deficient values of certain classes of meromorphic functions, Proc. London Math. Soc. 12 (1962), 312-344. MR 0138765 (25:2208)
  • [4] W. K. Hayman, Meromorphic functions, Math. Monographs, Clarendon Press, Oxford, 1965. MR 0164038 (29:1337)
  • [5] M. Heins, On a notion of convexity connected with a method of Carleman, J. Analyse Math. 3 (1959), 53-77. MR 0114000 (22:4831)
  • [6] D. F. Shea, On the Valiron deficiencies of meromorphic functions of finite order, Trans. Amer. Math. Soc. 124 (1966), 201-227. MR 0200458 (34:351)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A70

Retrieve articles in all journals with MSC: 30A70

Additional Information

Keywords: Entire function, almost radially distributed value, lower order, deficiency
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society