EULER CHARACTERISTICS AND CODIMENSIONS OF COMPLETE INTERSECTIONS

BANG-YEN CHEN

ABSTRACT. Studies on relations between Euler characteristics and codimensions of complete intersections.

Let F_1, F_2, \ldots, F_r be nonsingular hypersurfaces of degrees a_1, a_2, \ldots, a_r, in complex projective space $\mathbb{C}P^n$, and suppose that these hypersurfaces are in general position. The intersection $F_1 \cap F_2 \cap \cdots \cap F_r$ is a nonsingular algebraic variety denoted by $V_n[a_1, \ldots, a_r]$. In this short note, we prove the following theorem which completes the solution to the problem studied in [1]. The presentation of the proof follows closely that of the proofs in [1].

Theorem. Let V_n be an n-dimensional complete intersection with Euler characteristic $\chi(V_n) = v_1 \cdots v_p$ for some prime numbers v_1, \ldots, v_p ($\neq \pm 1$). Then V_n can be imbedded in $\mathbb{C}P^{n+p-1}$ as a complete intersection except when V_n is $V_1[2]$ or $V_1[2, 3]$ or $V_1[2, 2, 2]$.

Proof. In [2], Hirzebruch proved the following identity:

$$
\sum_{n=0}^{\infty} \chi(V_n[a_1, a_2, \ldots, a_r])z^n = \frac{a_1a_2 \cdots a_r}{(1 - z)^2} \prod_{i=1}^{r} \frac{1}{1 + (a_i - 1)z}.
$$

(1)

By multiplying power series, (1) implies

$$
\chi(V_n[a]) = \frac{(1 - a)^{n+2} - 1 + (n + 2)a}{a^2} \cdot a,
$$

(2)

$$
(-1)^n \chi(V_n[a_1, a_2, \ldots, a_r]) = a_r \sum_{k=0}^{n} (a_r - 1)^{n-k}(-1)^k \chi(V_k[a_1, a_2, \ldots, a_{r-1}]).
$$

(3)

By induction, we find

$$
(-1)^n \chi(V_n[a_1, a_2, \ldots, a_r]) = a_1a_2 \cdots a_r h_n[a_1, a_2, \ldots, a_r],
$$

(4)

where

Received by the editors June 20, 1977.

Key words and phrases. Euler characteristic, complete intersection, codimension.

© American Mathematical Society 1978

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[h_n[a_1, a_2, \ldots, a_r] = \sum_{k_r=0}^{n} \sum_{k_{r-1}=0}^{k_r} \cdots \sum_{k_2=0}^{k_3} (-1)^{k_r}(a_r - 1)^{n-k_r} \]

\[\cdots (a_2 - 1)^{k_3-k_2} \Delta_{k_2}[a_1] , \]

and \(\Delta_k[a] = \{(1-a)^{k+2} - 1 + (k+2)a\}/a^2 \). It is clear that \(h_n[a] = (-1)^n \Delta_n[a], \Delta_1[3] = 0, \Delta_0[a] = 1, \Delta_n[2] = (n+2)/2 \) when \(n \) is even, \(\Delta_n[2] = (n+1)/2 \) when \(n \) is odd, and \((-1)^n \Delta_n[a] > 0 \) when \(n > 2 \) and \(a > 3 \). Thus, we obtain

\[h_n[a_1, a_2, \ldots, a_r] > 1 \text{ for } r > 2, \text{ except } n = 1, r = 2 \]

\[a_1 < 2, a_2 < 3, \text{ or } n = 1, r = 3, a_1, a_2, a_3 < 2. \] \(\tag{5} \)

\[h_n[a] \neq \pm 1 \text{ except } n = 1, a = 2 \text{ or } 4. \] \(\tag{6} \)

Now, we assume that \(V_n[a_1, a_2, \ldots, a_r] \); \(a_1, a_2, \ldots, a_r > 2 \), is a complete intersection with \(\chi(V_n) = \nu_1 \cdots \nu_p \) for some prime integers \(\nu_1, \ldots, \nu_p \neq \pm 1 \).

If \(r < p \), then it is done. If \(r > p \), then \((4) \) implies \(r = p \) and \(h_n[a_1, a_2, \ldots, a_r] = \pm 1 \). From (5) and (6) we see that this is impossible unless \(n = 1 \) and \(V_n \) is one of the following: \(V_{1}[2, 2], V_{1}[2, 3], V_{1}[2, 2, 2], V_{1}[2] \) or \(V_{1}[4] \). Since we have \(\chi(V_{1}[2, 2]) = 0, \chi(V_{1}[2, 3]) = -6, \chi(V_{1}[2, 2, 2]) = -8, \chi(V_{1}[2]) = 2 \) and \(\chi(V_{1}[4]) = -4 \), the theorem is proved.

References

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use