ON GROUPOIDS DEFINED BY COMMUTATORS

KI HANG KIM AND FRED W. ROUSH

Abstract. We study matrices R, L which count the numbers of solutions of $ix = j$ and $xi = j$. For slight generalizations of R, L, the relation $RL = LR$ characterizes associativity of a groupoid. For groupoids defined by group commutators $xyx^{-1}y^{-1}$ the relation $RL = LR$ is valid. In addition one can study analogues of Green's relations. Any \mathcal{H}-class contains at most four \mathcal{H}-classes in a commutator groupoid.

In this paper we mainly consider groupoids whose underlying set is a group, with groupoid multiplication $x \ast y = xyx^{-1}y^{-1}$. Our interest is mainly in the matrices R and L such that r_{ij} counts the number of solutions of $i \ast x = j$ and l_{ij} counts the number of solutions of $x \ast i = j$.

Definition. Let G be a groupoid. Let t, u be functions from G to a commutative semiring K with 0. Then $R(t)$ is the matrix (r_{ij}) for $i, j \in G$ such that $r_{ij} = \sum t(x)$, the summation being over all x such that $ix = j$, if this sum is defined. And $L(u)$ is the matrix (l_{ij}) such that $l_{ij} = \sum u(x)$, the summation being over all x such that $xi = j$ if this sum is defined. Summations over the empty set are considered to be 0. And we assume $0 + k = k$ and $0k = 0$ for all $k \in K$.

In this paper we consider the two cases: (i) G finite, $K = \mathbb{Z}^+ \cup \{0\}$; (ii) G arbitrary, K the Boolean algebra $\{0, 1\}$. The following proposition is essentially due to M. S. Putcha [2].

Proposition 1. In the two cases just mentioned, the matrices $R(t), L(u)$ commute for all t, u if and only if G is associative.

Proof. We have

$$(R(t)L(u))_{ij} = \sum t(x)u(y)$$

where the summation is over all pairs such that $ix = k, yk = j$ for some k, i.e. all pairs such that $y(ix) = j$. Likewise

$$(L(u)R(t))_{ij} = \sum u(y)t(x)$$

where the summation is over all pairs such that $(yi)x = j$. So if G is...
associative $R(t)$, $L(u)$ commute. For the converse, let u, t range independently over all functions which send every element of G except one, to zero. This proves the proposition.

Remark. By choosing t, u to send elements of G to randomly chosen real numbers, this might give a quick computer test for nonassociativity of a groupoid.

From here on, we assume both t, u send all elements of G to 1, and we write R, L for $R(t)$, $L(u)$.

Definition. A group commutator groupoid is a groupoid G whose underlying set is a group and whose groupoid product is given by $xyx^{-1}y^{-1}$.

Proposition 2. Let G be a group commutator groupoid. Let T be the matrix of the permutation $x \rightarrow x^{-1}$. Then $RT = TR = L$. Therefore R, L commute.

Proof. The equation $RT = L$ follows from $(ix^{-1}-1)^{-1} = xix^{-1}i^{-1}$. The identity $i^{-1}ix^{-1} = (i^{-1}xi)(i^{-1}xi)^{-1}i^{-1}$ implies $TR = RT$.

Proposition 3. For each a, b, R_{ab} and L_{ab} are each either zero or the order of the centralizer of a. The row sums of R, L all equal the order of G. The bth column sum of R and the bth column sum of L each equal the number of pairs x, y such that $x^ay^{-1}y^{-1} = b$. The trace of R equals the sum of the orders of the centralizers of those elements a which are conjugate to a^2.

Proof. The entry R_{ab} is the number of solutions of $xa^{-1}x^{-1} = a^{-1}b$. This is either zero or has the same order as the centralizer of a^{-1}. But the centralizer of a equals the centralizer of a^{-1}. Likewise for L_{ab}. The second and third statements can be observed to be true. For the fourth statement, note that the trace of R is the sum of the orders of the centralizers of such that $xa^{-1}x^{-1} = e$. But this can happen only if $a = e$. Likewise for L. This proves the proposition.

Definition. A (left, right) ideal in a groupoid is a subset closed under (left, right) multiplication. The principal (left, right) ideal generated by an element is the intersection of all (left, right) ideals containing that element. Two elements are (\mathcal{R}, \mathcal{L}, \mathcal{F})-equivalent if and only if they generate the same principal (right, left, two-sided) ideal. They are \mathcal{H}-equivalent if and only if they are both \mathcal{R}- and \mathcal{L}-equivalent. These equivalence relations are called Green’s relations.

Definition. A directed graph is strongly connected if and only if every point can be reached from every other point by a directed path.

Corresponding to this one can express any graph as a disjoint union of its strong components. We consider the graph of a matrix to be the graph whose vertices are the elements of the index set of the matrix, having an edge from i to j if and only if the (i, j)-entry of the matrix is nonzero.

Proposition 4. For any groupoid, the strong components of the graphs of
ON GROUPOIDS DEFINED BY COMMUTATORS

I + R, I + L, (I + R)(I + L) are the R, L, \mathcal{J}-classes. Here I denotes the identity matrix.

Note that if the elements of G are arranged in the order of an ascending chain of normal subgroups, the matrices R, L will assume a block triangular form. In addition nilpotency can easily be detected.

Theorem 5. A finite group G is nilpotent if and only if the matrix R of its commutator groupoid is nilpotent. Likewise for L.

Proof. Suppose G is nilpotent. Arrange the elements of G in the order of an ascending central series. Then R, L are lower subtriangular matrices.

Suppose G is not nilpotent. Then by Theorem 14.4.7 of [1] there exist x, p such that x has order prime to p and x normalizes but does not centralize some p subgroup Q. Choose Q to be minimal. Then x acts trivially on $[Q, Q]$ by conjugation. Then x does not act trivially on $Q/[Q, Q]$ by conjugation, or the group generated by x, Q would have a central series. So x gives a nontrivial automorphism of $Q/[Q, Q]$. An endomorphism of $Q/[Q, Q]$ is given by $y \to xyx^{-1}y^{-1}$, mod$[Q, Q]$. If this endomorphism were nilpotent, the automorphism xyx^{-1} would have order a power of p, which is false. Thus the endomorphism of $Q/[Q, Q]$ given by $y \to xyx^{-1}y^{-1}$ is not nilpotent. This implies L is nonnilpotent. Similarly for R.

Theorem 6. If G is a group commutator groupoid, every \mathcal{J}-class of G contains at most two \mathcal{R}-classes and at most two \mathcal{L}-classes. If there are two of either type, they are equal in size. And $a \mathcal{J} b$ if and only if there exists c such that $a \mathcal{R} c, c \mathcal{L} b$ if and only if there exists d such that $a \mathcal{R} d, d \mathcal{R} b$.

Proof. The classes will not be affected if we use matrices over the Boolean algebra $\{0, 1\}$ always, The classes obtained from $I + R, I + L, (I + R)(I + L)$ are the same as those obtained from

\[
\begin{align*}
\overline{R} &= I + R + R^2 + \ldots, \\
\overline{L} &= I + L + L^2 + \ldots, \\
\overline{RL} &= \sum_0^\infty R^n + \sum_1^\infty R^nT.
\end{align*}
\]

Suppose $a \not\mathcal{J} b$. Note that $\overline{R}, \overline{L}, \overline{RL}$ are idempotent. Thus there is an edge in the graph of \overline{RL} from a to b and one from b to a. Each of these two edges comes from one of the two summands

\[
\sum_0^\infty R^n, \quad \sum_1^\infty R^nT.
\]

In the first case there is an \overline{R} edge from one to the other and in the second case there is an \overline{R} edge from one to the inverse of the other. We denote the existence of an edge from one to the other by \to. We observe that $x \to y^{-1}$ if and only if $x^{-1} \to y$ since $RT = TR$. There are four cases:

Case 1. $a \to b, b \to a$ in the graph of \overline{R}. Then $a \mathcal{R} b$.

Case 2. \(a \to b^{-1} \), \(b \to a^{-1} \) in the graph of \(\overline{R} \). Then \(a \not\equiv b \).

Case 3. \(a \to b \), \(b \to a^{-1} \) in the graph of \(\overline{R} \). Then also \(a^{-1} \to b^{-1} \), \(b^{-1} \to a \).

These imply \(a \not\equiv b \).

Case 4. \(a \to b^{-1} \), \(b \to a \). Again \(a \not\equiv b \). Therefore either \(a \) lies in the \(\equiv \)-class of \(b \) or that of \(b^{-1} \). Thus the \(\equiv \)-class of \(b \) contains at most two \(\equiv \)-classes. Likewise it contains at most two \(\mathcal{L} \)-classes.

Suppose there do exist two \(\equiv \)-classes in some \(\mathcal{L} \)-class. Then there exist \(a, b \) such that \(a \not\equiv b \) but not \(a \equiv b \). Thus the situation must be that of Case 2. And for any \(a, b \) in different \(\equiv \)-classes but in the same \(\mathcal{L} \)-class, this must be so. Therefore \(a \not\equiv b^{-1} \). Thus for any \(b \) in this \(\mathcal{L} \)-class, \(b \) and \(b^{-1} \) will lie in different \(\equiv \)-classes. Therefore the mapping \(x \to x^{-1} \) will be a 1-1 onto mapping from one \(\equiv \)-class to the other. Likewise for \(\mathcal{L} \)-classes.

In Cases 1, 3, 4, \(a \equiv b \) and the last statement is valid. Suppose we are in the second case. Suppose \(a \to b^{-1} \) by an odd number of edges in the graph of \(R \), and \(b^{-1} \to a \) by an odd number. Then since \(L = RT \), \(a \not\equiv b \). Suppose \(a \to b^{-1} \) by an even number of \(\equiv \) edges and \(b^{-1} \to a \) by an even number. Let \(a \to x \) be the first edge in the sequence from \(a \) to \(b^{-1} \). Then \(a \to x \to b^{-1} \to a \to x \). So \(a \equiv x, x \not\equiv b \). And \(a \not\equiv x^{-1}, x^{-1} \equiv b \). If the number of edges from \(a \) to \(b^{-1} \) is even and the number of edges from \(b^{-1} \) to \(a \) is odd, or vice versa, we can double the path and obtain one of the two former cases. This proves the theorem.

Example 1. For the symmetric group on three symbols, \(L \) and \(R \) are, respectively

\[
\begin{bmatrix}
6 & 0 & 0 & 0 & 0 & 0 \\
3 & 3 & 0 & 0 & 0 & 0 \\
3 & 0 & 3 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 & 0
\end{bmatrix}
\quad
\begin{bmatrix}
6 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 3 & 0 & 0 & 0 \\
3 & 3 & 0 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 & 0
\end{bmatrix}
\]

Example 2. It is difficult to find a finite group with a \(\mathcal{J} \)-class containing four different \(\mathcal{K} \)-classes. Consider the semidirect product of the multiplicative group of numbers of the form \(\pi^i (\pi - 1)^j \) with the additive real numbers. Then \(1 \not\equiv \pi - 1 \) but \(1 \) and \(\pi - 1 \) are not \(\equiv \)-equivalent. Also \(1 \equiv 1 - \pi \) but \(1 \) and \(1 - \pi \) are not \(\equiv \)-equivalent. Then Theorem 6 implies there are at least four distinct \(\mathcal{K} \)-classes, in the \(\mathcal{J} \)-class of 1.

Remark. Many of the results demonstrated here are trivially true for groupoids defined by Lie algebra commutators.

References

Department of Mathematics, Alabama State University, Montgomery, Alabama 36101