Fibered stable compacta have finite homotopy type
Author:
Ross Geoghegan
Journal:
Proc. Amer. Math. Soc. 71 (1978), 123129
MSC:
Primary 55D15; Secondary 57A65
Erratum:
Proc. Amer. Math. Soc. 74 (1979), 391.
MathSciNet review:
0515418
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is proved that a fibered compact metric space having the shape of a CW complex has the homotopy type of that complex, and that its Wall obstruction to finiteness is zero.
 [1]
Morton
Brown, Some applications of an approximation
theorem for inverse limits, Proc. Amer. Math.
Soc. 11 (1960),
478–483. MR 0115157
(22 #5959), http://dx.doi.org/10.1090/S00029939196001151574
 [2]
T.
A. Chapman, Lectures on Hilbert cube manifolds, American
Mathematical Society, Providence, R. I., 1976. Expository lectures from the
CBMS Regional Conference held at Guilford College, October 1115, 1975;
Regional Conference Series in Mathematics, No. 28. MR 0423357
(54 #11336)
 [3]
Tammo
tom Dieck, Partitions of unity in homotopy theory, Composito
Math. 23 (1971), 159–167. MR 0293625
(45 #2702)
 [4]
David
A. Edwards and Ross
Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits
and the Wall obstruction, Ann. of Math. (2) 101
(1975), 521–535. MR 0375330
(51 #11525)
 [5]
David
A. Edwards and Ross
Geoghegan, The stability problem in shape, and a
Whitehead theorem in prohomotopy, Trans. Amer.
Math. Soc. 214
(1975), 261–277. MR 0413095
(54 #1216), http://dx.doi.org/10.1090/S00029947197504130956
 [6]
David
A. Edwards and Harold
M. Hastings, Čech and Steenrod homotopy theories with
applications to geometric topology, Lecture Notes in Mathematics, Vol.
542, SpringerVerlag, BerlinNew York, 1976. MR 0428322
(55 #1347)
 [7]
Ross
Geoghegan, Compacta with the homotopy type of finite
complexes, Geometric topology (Proc. Georgia Topology Conf., Athens,
Ga., 1977), Academic Press, New YorkLondon, 1979, pp. 603–608.
MR 537753
(81a:55018)
 [8]
Ross
Geoghegan and R.
C. Lacher, Compacta with the shape of finite complexes, Fund.
Math. 92 (1976), no. 1, 25–27. MR 0418029
(54 #6073)
 [9]
Harold
M. Hastings, Fibrations of compactly generated spaces,
Michigan Math. J. 21 (1974), 243–251 (1975). MR 0367985
(51 #4227)
 [10]
Sibe
Mardešić and Jack
Segal, Shapes of compacta and ANRsystems, Fund. Math.
72 (1971), no. 1, 41–59. MR 0298634
(45 #7686)
 [11]
Micheal
Mather, Counting homotopy types of manifolds, Topology
3 (1965), 93–94. MR 0176470
(31 #742)
 [12]
John
Milnor, On spaces having the homotopy type of
a 𝐶𝑊complex, Trans. Amer.
Math. Soc. 90
(1959), 272–280. MR 0100267
(20 #6700), http://dx.doi.org/10.1090/S00029947195901002674
 [13]
Kiiti
Morita, On shapes of topological spaces, Fund. Math.
86 (1975), no. 3, 251–259. MR 0388385
(52 #9222)
 [14]
Daniel
G. Quillen, Homotopical algebra, Lecture Notes in Mathematics,
No. 43, SpringerVerlag, BerlinNew York, 1967. MR 0223432
(36 #6480)
 [15]
L.
Siebenmann, L.
Guillou, and H.
Hähl, Les voisinages ouverts réguliers, Ann. Sci.
École Norm. Sup. (4) 6 (1973), 253–293
(French). MR
0331399 (48 #9732)
 [16]
Edwin
H. Spanier, Algebraic topology, McGrawHill Book Co., New
YorkToronto, Ont.London, 1966. MR 0210112
(35 #1007)
 [17]
Arne
Strøm, Note on cofibrations, Math. Scand.
19 (1966), 11–14. MR 0211403
(35 #2284)
 [18]
C.
T. C. Wall, Finiteness conditions for
𝐶𝑊complexes, Ann. of Math. (2) 81
(1965), 56–69. MR 0171284
(30 #1515)
 [19]
James
E. West, Mapping Hilbert cube manifolds to ANR’s: a solution
of a conjecture of Borsuk, Ann. of Math. (2) 106
(1977), no. 1, 1–18. MR 0451247
(56 #9534)
 [20]
J.
H. C. Whitehead, A certain exact sequence, Ann. of Math. (2)
52 (1950), 51–110. MR 0035997
(12,43c)
 [21]
R. Geoghegan, The inverse limit of homotopy equivalences between towers of fibrations is a homotopy equivalencea simple proof (submitted).
 [1]
 M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478483. MR 0115157 (22:5959)
 [2]
 T. A. Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., vol. 28, Amer. Math. Soc., Providence, R.I., 1976. MR 0423357 (54:11336)
 [3]
 T. tom Dieck, Partitions of unity in homotopy theory, Compositio Math. 23 (1971), 159167. MR 0293625 (45:2702)
 [4]
 D. A. Edwards and R. Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521535; correction 104 (1976), p. 389. MR 0375330 (51:11525)
 [5]
 , The stability problem in shape and a Whitehead theorem in prohomotopy, Trans. Amer. Math. Soc. 214 (1975), 261277. MR 0413095 (54:1216)
 [6]
 D. A. Edwards and H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., vol. 542, SpringerVerlag, Berlin and New York, 1976. MR 0428322 (55:1347)
 [7]
 R. Geoghegan, Compacta with the homotopy type of finite complexes, (Proc. Georgia Conf. on Geometric Topology, 1977), Academic Press, New York (to appear). MR 537753 (81a:55018)
 [8]
 R. Geoghegan and R. C. Lacher, Compacta with the shape of finite complexes, Fund. Math. 92 (1976), 2527. MR 0418029 (54:6073)
 [9]
 H. M. Hastings, Fibrations of compactly generated spaces, Michigan Math. J. 21 (1974), 243251. MR 0367985 (51:4227)
 [10]
 S. Mardešić and J. Segal, Shapes of compacta and ANRsystems, Fund. Math. 72 (1971), 4159. MR 0298634 (45:7686)
 [11]
 M. Mather, Counting homotopy types of manifolds, Topology 4 (1965), 9394. MR 0176470 (31:742)
 [12]
 J. Milnor, On spaces having the homotopy type of CW complexes, Trans. Amer. Math. Soc. 90 (1959), 272280. MR 0100267 (20:6700)
 [13]
 K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251259. MR 0388385 (52:9222)
 [14]
 D. G. Quillen, Homotopical algebra, Lecture Notes in Math., vol. 43, SpringerVerlag, Berlin and New York, 1967. MR 0223432 (36:6480)
 [15]
 L. C. Siebenmann, L. Guillou and H. Hähl, Les voisinages réguliers ouverts, Ann. Sci. Ecole Norm. Sup. (4) 6 (1973), 253293. MR 0331399 (48:9732)
 [16]
 E. H. Spanier, Algebraic topology, McGrawHill, New York, 1966. MR 0210112 (35:1007)
 [17]
 A. Stróm, Note on cofibrations, Math. Scand. 19 (1966), 1114. MR 0211403 (35:2284)
 [18]
 C. T. C. Wall, Finiteness conditions for CWcomplexes, Ann. of Math. (2) 81 (1965), 5569. MR 0171284 (30:1515)
 [19]
 J. E. West, Mapping Hilbert cube manifolds to ANRs, Ann. of Math. (2) 106 (1977) (to appear). MR 0451247 (56:9534)
 [20]
 J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51110. MR 0035997 (12:43c)
 [21]
 R. Geoghegan, The inverse limit of homotopy equivalences between towers of fibrations is a homotopy equivalencea simple proof (submitted).
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
55D15,
57A65
Retrieve articles in all journals
with MSC:
55D15,
57A65
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197805154184
PII:
S 00029939(1978)05154184
Keywords:
Homotopy type of a CW complex,
shape,
Wall obstruction,
sequence of fibrations
Article copyright:
© Copyright 1978
American Mathematical Society
