Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A generalization of the Riesz-Herglotz theorem on representing measures


Author: Peter A. Loeb
Journal: Proc. Amer. Math. Soc. 71 (1978), 65-68
MSC: Primary 31D05
MathSciNet review: 0588522
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple construction is given that obtains maximal representing measures for positive harmonic functions on a domain W as the $ \mathrm{weak}^*$ limits of finite sums of point masses on $ {[0, + \infty ]^W}$. This new standard result, new even for the unit disk, is established for very general elliptic differential equations and domains, in fact, for a Brelot harmonic space, using nonstandard analysis.


References [Enhancements On Off] (What's this?)

  • [1] Robert M. Anderson and Salim Rashid, A nonstandard characterization of weak convergence, Proc. Amer. Math. Soc. 69 (1978), 327-333. MR 0480925 (58:1073)
  • [2] M. Brelot, On topologies and boundaries in potential theory, Springer-Verlag, Berlin, 1971. MR 0281940 (43:7654)
  • [3] G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, Ber. Verhandl. Sächs Akad. Wiss. Leipzig Math.-Phys. Klasse 63 (1911), 501-511.
  • [4] R. Hunt and R. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507-526. MR 0274787 (43:547)
  • [5] Peter A. Loeb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), 167-208. MR 0227455 (37:3039)
  • [6] -, Applications of nonstandard analysis to ideal boundaries in potential theory, Israel J. Math. 25 (1976), 154-187. MR 0457757 (56:15961)
  • [7] -, Weak limits of measures and the standard part map (preprint).
  • [8] Peter A. Loeb and Bertram Walsh, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), 597-600. MR 0190360 (32:7773)
  • [9] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. MR 0003919 (2:292h)
  • [10] R. Phelps, Lectures on Choquet's Theorem, Van Nostrand, Princeton, N. J., 1966. MR 0193470 (33:1690)
  • [11] F. Riesz, Sur certaines systèmes singuliers d'équations intégrales, Ann. Sci. École Norm. Sup 28 (1911), 33-62. MR 1509135
  • [12] A. Robinson, Nonstandard Analysis, North-Holland, Amsterdam, 1966. MR 0205854 (34:5680)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31D05

Retrieve articles in all journals with MSC: 31D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0588522-2
Keywords: Herglotz Theorem, representing measures, Brelot harmonic spaces, nonstandard analysis, $ \mathrm{weak}^*$ convergence
Article copyright: © Copyright 1978 American Mathematical Society