Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A further refinement for coefficient estimates of univalent functions


Author: David Horowitz
Journal: Proc. Amer. Math. Soc. 71 (1978), 217-221
MSC: Primary 30A34
DOI: https://doi.org/10.1090/S0002-9939-1978-0480979-0
MathSciNet review: 0480979
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The coefficient inequalities of FitzGerald are used to show that if $ f(z) = z + {a_2}{z^2} + {a_3}{z^3} + \ldots $ is analytic and univalent in the unit disc, then $ \vert{a_n}\vert < (1.0657)n$. The technique used to obtain this bound cannot yield a result better than $ \vert{a_n}\vert < (1.0599)n$.


References [Enhancements On Off] (What's this?)

  • [1] I. E. Bazilevič, Improvement of estimates for the coefficients of univalent functions, Mat. Sb. 22 (64) (1948), 381-390. (Russian) MR 10, 186. MR 0026689 (10:186e)
  • [2] -, On distortion theorems and coefficients of univialent functions, Mat. Sb. 28 (70) (1951), 147-164. (Russian) MR 12, 600. MR 0039804 (12:600h)
  • [3] C. H. FitzGerald, Quadratic inequalities and coefficient estimates for schlict functions, Arch. Rational Mech. Anal. 46 (1972), 356-368. MR 49 #557. MR 0335777 (49:557)
  • [4] G. M. Goluzin, On the coefficients of univalent functions, Mat. Sb. 22 (64) (1948), 373-380. (Russian) MR 10, 186. MR 0026688 (10:186d)
  • [5] D. A. Horowitz, Applications of quadratic inequalities in the theory of univalent functions, Doctoral dissertation, University of California, San Diego, 1974.
  • [6] -, A refinement for coefficient estimates of univalent functions, Proc. Amer. Math. Soc. 54 (1976), 176-178. MR 53 #792. MR 0396932 (53:792)
  • [7] E. Landau, Über schlichte Funktionen, Math. Z. 30 (1929), 635-638. FM 55, 187. MR 1545083
  • [8] N. A. Lebedev and I. M. Milin, On the coefficients of certain classes of analytic functions, Dokl. Akad. Nauk SSSR 67 (1949), 221-223. (Russian) MR 11, 339. MR 0032740 (11:339e)
  • [9] -, On the coefficients of certain classes of analytic functions, Mat. Sb. 28 (70) (1951), 359-400. (Russian) MR 13, 640. MR 0045816 (13:640a)
  • [10] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. (2) 23 (1925), 481-519.
  • [11] I. M. Milin, Estimation of coefficients of univalent functions, Dokl. Akad. Nauk SSSR 160 (1965), 769-771 = Soviet Math. Dokl. 6 (1965), 196-198. MR 30 #3206. MR 0172991 (30:3206)
  • [12] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R. I., 1969. MR 0218588 (36:1672b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A34

Retrieve articles in all journals with MSC: 30A34


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0480979-0
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society