A COUNTEREXAMPLE TO A CONJECTURE OF A. H. STONE

HAROLD BELL AND R. F. DICKMAN, JR.

Abstract. A. H. Stone has offered a sequence, \(S(n); n > 2 \), of conjectures characterizing multicoherence for locally connected, connected, normal spaces. The conjecture \(S(n) \) is, "\(X \) is multicoherent if and only if \(X \) can be represented as the union of a circular chain of continua containing exactly \(n \) elements". It is known that \(S(3) \) always obtains and that \(S(6) \) obtains if the space is compact. In this paper, we construct a multicoherent plane Peano continuum \(C \) for which \(S(7) \) fails. Since \(S(n + 1) \) implies \(S(n) \), \(n > 2 \), \(S(n) \) fails for \(C \) for all \(n > 6 \). Furthermore we show that for any integer \(n > 3 \) there exists a plane Peano continuum for which \(S(2n) \) obtains while \(S(2n + 1) \) fails.

Introduction. Throughout this paper \(X \) will denote a locally connected, connected normal space. By a continuum we mean a closed and connected (not necessarily compact) subset of \(X \). For \(A \subset X \), \(b_0(A) \) denotes the number of components of \(A \) less one (or \(\infty \) if this number is infinite). The degree of multicoherence, \(r(X) \), of \(X \) is defined by

\[
r(X) = \sup\{ b_0(H \cap K): X = H \cup K \text{ and } H \text{ and } K \text{ are subcontinua of } X \}.
\]

If \(r(X) = 0 \), \(X \) is said to be unicoherent and we say that \(X \) is multicoherent otherwise. By a chain \(\kappa \) in \(X \) we mean a finite collection of subcontinua of \(X \) that can be ordered \(\kappa = \{ K_1, K_2, \ldots, K_n \} \) so that \(K_i \cap K_j \neq \emptyset \) if and only if \(|i - j| < 1 \). A circular chain in \(X \) is a collection of subcontinua \(\kappa \) such that no three members of \(\kappa \) have a point in common and if \(K \in \kappa \), then \(\kappa - \{ K \} \) is a chain in \(X \). Let \(n > 2 \) be an integer and let \(S(n) \) denote the following statement:

\(S(n): X \) is multicoherent if and only if \(X \) can be represented as the union of a circular chain containing exactly \(n \) elements.

In a private communication, A. H. Stone conjectured that \(S(n) \) is true for all \(n > 2 \) and he stated that he had established \(S(n) \) for all \(n > 2 \) whenever \(0 < r(X) < \infty \). A. D. Wallace established \(S(3) \) for Peano continua in [4]. A. H. Stone announced \(S(3) \) for locally connected normal spaces in [3] and in [2], the second author included a proof of \(S(3) \) for such spaces. In [1], the second author showed that \(S(4) \) obtains for a large class of spaces and in [2], he showed that \(S(6) \) always obtains if \(X \) is compact. The purpose of this note
is to give an example of a multicoherent plane Peano continuum for which $S(7)$ fails.

Lemma 9. Let a and b be distinct points in X and suppose that $X - \{a, b\} = R \cup P \cup Q$ where R, P and Q are pairwise disjoint open connected sets and $\bar{R} \cap \bar{P} \cap \bar{Q} = \{a, b\}$. If κ is a circular chain in X and $\cup \kappa = X$ and some $K \in \kappa$ lies entirely in R, then $(\bar{P} \cup \bar{Q})$ meets at most four elements of κ.

Proof. Notice that $\{a, b\}$ is the boundary of each of P, Q and R. Let $K_0 \subset R$ and $\{K_1, K_2, \ldots, K_n\}$ be a chain representation of $\kappa - \{K_0\}$. Let S be the union of those $K \in \kappa$ that contain a, let T be the union of those $K \in \kappa$ that contain b, and let V be the union of those $K \in \kappa$ that contain neither a or b. Clearly, V has at most two components, one of which contains K_0 and is therefore contained in R. It follows that either \bar{P} or \bar{Q} must fail to intersect V. Therefore either $\bar{Q} \subset S \cup T$ or $\bar{P} \subset S \cup T$. Since both P and Q are connected and intersect both S and T it follows that $S \cap T \neq \emptyset$. That is, there is a $k > 0$ such that $\{a, b\} \subset K_k \cup K_{k+1}$. It follows that $K_i \subset R$ except possibly when $i = k - 1, k, k + 1$ or $k + 2$.

Construction of the example. For each positive integer i, let C_i be a one-dimensional simplicial complex in the plane, with V_i as its set of vertices and \mathcal{E}_i as its set of edges, constructed as follows:

Let V_1 consist of three evenly distributed points on the unit circle $\{z: |z| = 1\}$ and let \mathcal{E}_1 consist of three connecting open intervals. Then $C_1 = \cup \{I: I \in \mathcal{E}_1\} \cup V_1$. Let $U_1 = \{U(I): I \in \mathcal{E}_1\}$ be a set of mutually disjoint bounded open convex sets such that $I \subset U(I)$ for $I \in \mathcal{E}_1$. Suppose C_{n}, V_n, U_n, and \mathcal{E}_n have been defined. For each $I \in \mathcal{E}_n$ let $a(I), b(I)$ be the endpoints of I, and $m(I)$ its midpoint $(a(I) + b(I))/2$. Let t_n be chosen so that $1 < t_n < 1 + 1/n$ and (for all $I \in \mathcal{E}_n$) the two “half-open” line segments $(a(I), t_nm(I)), [t_nm(I), b(I))$ are both contained in $U(I)$. Let $V_{n+1} = V_n \cup \{m(I): I \in \mathcal{E}_n\} \cup \{t_nm(I): I \in \mathcal{E}_n\}$. Let $\mathcal{E}_{n+1} = \{(a(I), m(I)): I \in \mathcal{E}_n\} \cup \{(m(I), b(I)): I \in \mathcal{E}_n\} \cup \{(a(I), t_nm(I)): I \in \mathcal{E}_n\} \cup \{(t_nm(I), b(I)): I \in \mathcal{E}_n\}$. Then $C_{n+1} = \cup \{I: I \in \mathcal{E}_{n+1}\} \cup V_{n+1}$. Let $\mathcal{U}_{n+1} = \{U(I): I \in \mathcal{E}_{n+1}\}$ be a set of mutually disjoint open convex sets such that if $I \in \mathcal{U}_{n+1}$ and $J \in \mathcal{U}_n$ and $I \subset U(J)$ then $I \subset U(I) \subset U(J)$. Let $D = \cup_{i=1}^{\infty} C_i$ and let $C = D$.

It is clear that C is multicoherent. By Theorems 3 and 6 of [2], $S(6)$ obtains for C. We will now show that $S(7)$ fails for C. (Since $(S_n + 1)$ always implies $S(n), S(k)$ for $k > 6$ fails for C.)

Definition. For $I = (a(I), b(I)) \in \mathcal{E}_n$ let $I' = (a(I), t_n m(I)) \cup [t_n m(I), b(I))$; we use the convention $(I')' = I$. Let $\mathcal{E}_n' = \{I': I \in \mathcal{E}_n\} \cup \mathcal{E}_n$.

The following lemma seems clear.

Lemma A. (1) C is a Peano continuum.

(2) If $I \in \mathcal{E}_n'$ has endpoints $a(I)$ and $b(I)$ then $C - \{a(I), b(I)\}$ has exactly three components $P(I), P(I')$ and $Q(I)$ where $I \subset P(I)$ and $I' \subset P(I')$.

(3) If, for each i, $I_i \in \mathcal{E}_i$ then $\lim_{i \to \infty} \text{dia}(I_i) = \lim_{i \to \infty} \text{dia} P(I_i) = 0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 1. The plane Peano continuum C cannot be the union of a circular chain with seven elements.

Proof. Suppose to the contrary that κ is a circular chain with seven elements and $\bigcup \kappa = C$. Since each of the three vertices of C_1 is contained in at most two $K \in \kappa$ it follows that some $K \in \kappa$ contains no vertex of C_1 and is therefore contained in $P(I_1)$ for some $I_1 \in \mathcal{S}'$. If a and b are the endpoints of I_1, we may write $C - \{a, b\}$ as the union of $R = P(I_1)$, $P = P(I_1')$ and $Q = Q(I_1)$. According to Lemma 9, $(P \cup Q)$ meet at most four elements of κ and so R contains three elements, say K_1^1, K_2^1, and K_3^1. Now the vertex of C_2 that lies in R, must miss one of these K_i^1's, say K_1^1. Then there is an $I_2 \in \mathcal{S}_2'$ such that $P(I_2)$ contains K_1^1. Let a_2, b_2 be the endpoints of I_2 and note that

$$C - \{a_2, b_2\} = P(I_2) \cup P(I_2') \cup Q(I_2).$$

Again by Lemma 8, $P(I_2)$ must contain 3 elements of κ and hence the new vertex of C_3 that lies in $P(I_2)$ must miss one of these elements of κ. We continue as above and select a sequence I_2, I_3, \ldots, such that $I_j \in \mathcal{S}_j'$, $P(I_{j+1}) \subset P(I_j)$ and each $P(I_j)$ contains a member of κ, K_j. Since κ is finite, there is a subsequence $\{I_{j_r}\}$ such that $K_{j_r} = K_{j_s}$ for all $r, s > 1$. But then $K_j \subset \cap_{n=2}^{\infty} P(I_n)$, and, by Lemma A, K_j must be a singleton. Of course, this is impossible and this completes the proof.

Theorem 2. For all integers $n \geq 3$, there exists a plane Peano continuum $P(n)$ such that $S(2n)$ obtains but $S(2n + 1)$ fails.

Proof. We construct $P(n)$ in the same fashion we constructed C except in this instance we change the example by letting C_1 be a regular n-gon. If I is an edge in C_1 with endpoints a and b then $\overline{P(I)} \cup \overline{P(I')}$ can be easily written

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
as the union of two continua K_i^a and K_i^b where $a \notin K_i^b$ and $b \notin K_i^a$. Then
\{ $K_i^a: I$ is an edge in C_1 \} \cup \{ $K_i^b: I$ is an edge in C_1 \} is a circular chain that
covers $P(n)$ and has $2n$ elements. Let κ be any circular chain that covers
$P(n)$. If every element of κ contains a vertex of C_1 then κ has at most $2n$
elements. If some element of κ fails to contain a vertex of C_1 then there is an
$I \in \mathcal{E}_i$ such that $P(I)$ contains an element of κ. The same proof used for
$P(3)$ then shows that in this case κ has at most 6 elements.

Remark. The authors have not been able to construct an example of a
plane Peano continuum P for which $S(2n + 1)$ obtains while $S(2n + 2)$ fails.

References

1. R. F. Dickman, Jr., Some mapping characterizations of unicoherence, Fund. Math. 78 (1973),
27-35.
427-447.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO 45221

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY,
BLACKSBURG, VIRGINIA 24061