Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The Lebesgue decomposition theorem for partially ordered semigroup-valued measures


Author: Panaiotis K. Pavlakos
Journal: Proc. Amer. Math. Soc. 71 (1978), 207-211
MSC: Primary 46G10; Secondary 28A55
MathSciNet review: 0487449
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper is concerned with partially ordered semigroup-valued measures. Below are given generalizations of the classical Lebesgue Decomposition Theorem.

These results can be applied to Stone or $ {W^ \ast }$ algebra-valued positive measures (cf. [3], [12], [13], [14]).


References [Enhancements On Off] (What's this?)

  • [1] S. K. Berberian, Measure and integration, Macmillan, New York, 1965. MR 0183839 (32:1315)
  • [2] R. Cristescu, Integrarea în spatii semiordonate, Acad. Repub. Pop. Romîne. Bul. Sti. Sect. Sti. Mat. Fiz. 4 (1952), 291-310. MR 0060749 (15:721f)
  • [3] W. Hackenbroch, Zum Radon-Nikodymschen Satz fur positive Vectormasse, Math. Ann. 206 (1973), 63-65. MR 0323988 (48:2340)
  • [4] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 0033869 (11:504d)
  • [5] R. A. Johnson, On the Lebesgue decomposition theorem, Proc. Amer. Math. Soc. 18 (1967), 628-632. MR 0218516 (36:1602)
  • [6] P. K. Pavlakos, Measures and integrals in ordered topological groups, Thesis, University of Athens, 1972.
  • [7] A. Peressini, Ordered topological vector spaces, Harper and Row, New York, 1967. MR 0227731 (37:3315)
  • [8] M. Sion, A theory of semigroup-valued measures, Lecture Notes in Math., vol. 355, Springer-Verlag, Berlin and New York, 1973. MR 0450503 (56:8797)
  • [9] T. Traynor, Differentiation of group-valued outer measures, Thesis, University of British Columbia, 1969.
  • [10] -, Decomposition of group-valued additive set functions, Ann. Inst. Fourier (Grenoble) 22 (1972), 131-140. MR 0333114 (48:11439)
  • [11] B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff, Groningen, 1967. MR 0224522 (37:121)
  • [12] M. J. D. Wright, Stone-algebra-valued measures and integrals, Proc. London Math. Soc. 19 (1969), 107-122. MR 0240276 (39:1625)
  • [13] -, Vector lattice measures on locally compact spaces, Math. Z. 120 (1971), 193-203. MR 0293373 (45:2450)
  • [14] -, Measures with values in a partially ordered vector space, Proc. London Math. Soc. 25 (1972), 675-688. MR 0344413 (49:9152)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G10, 28A55

Retrieve articles in all journals with MSC: 46G10, 28A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0487449-4
Keywords: Partially ordered semigroup, monotone complete partially ordered semigroup, partially ordered semigroup of the countable type, o-measure, absolutely continuous and singular o-measure, partially ordered topological semigroup, $ \sigma $-compatible topology with the partial ordering, $ {\tau _X}$-measure
Article copyright: © Copyright 1978 American Mathematical Society