Subshifts of finite type in linked twist mappings
Author:
Robert L. Devaney
Journal:
Proc. Amer. Math. Soc. 71 (1978), 334338
MSC:
Primary 58F15
MathSciNet review:
0494289
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For each pair of nonzero integers j, k, we define a homeomorphism of the twodisk minus three holes. We show that there exists a compact, invariant, hyperbolic set for each on which is conjugate to a subshift of finite type. This implies that the topological entropy of is bounded below by .
 [1]
Rufus
Bowen, Topological entropy and axiom 𝐴, Global
Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968),
Amer. Math. Soc., Providence, R.I., 1970, pp. 23–41. MR 0262459
(41 #7066)
 [2]
Rufus
Bowen, On Axiom A diffeomorphisms, American Mathematical
Society, Providence, R.I., 1978. Regional Conference Series in Mathematics,
No. 35. MR
0482842 (58 #2888)
 [3]
Martin
Braun, Particle motions in a magnetic field, J. Differential
Equations 8 (1970), 294–332. MR 0264906
(41 #9496)
 [4]
Robert
Easton, Chain transitivity and the domain of influence of an
invariant set, The structure of attractors in dynamical systems (Proc.
Conf., North Dakota State Univ., Fargo, N.D., 1977) Lecture Notes in
Math., vol. 668, Springer, Berlin, 1978, pp. 95–102. MR 518550
(80j:58051)
 [5]
John
M. Franks, Constructing structurally stable diffeomorphisms,
Ann. of Math. (2) 105 (1977), no. 2, 343–359.
MR
0448434 (56 #6740)
 [6]
Anthony
Manning, Topological entropy and the first homology group,
Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and
Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C.
Zeeman on his fiftieth birthday), Springer, Berlin, 1975,
pp. 185–190. Lecture Notes in Math., Vol. 468. MR 0650661
(58 #31266)
 [7]
Jürgen
Moser, Stable and random motions in dynamical systems,
Princeton University Press, Princeton, N. J.; University of Tokyo Press,
Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl
Lectures, the Institute for Advanced Study, Princeton, N. J; Annals of
Mathematics Studies, No. 77. MR 0442980
(56 #1355)
 [8]
S.
Smale, Differentiable dynamical
systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 0228014
(37 #3598), http://dx.doi.org/10.1090/S000299041967117981
 [9]
William
P. Thurston, On the geometry and dynamics of
diffeomorphisms of surfaces, Bull. Amer. Math.
Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596
(89k:57023), http://dx.doi.org/10.1090/S027309791988156856
 [10]
R.
F. Williams, Classification of subshifts of finite type, Ann.
of Math. (2) 98 (1973), 120–153; errata, ibid. (2)
99 (1974), 380–381. MR 0331436
(48 #9769)
 [1]
 R. Bowen, Topological entropy and Axiom A, Proc. Sympos. Pure Math., Vol. 14, Amer. Math. Soc., Providence, R. I., 1968. MR 0262459 (41:7066)
 [2]
 , On Axiom A diffeomorphisms, Proc. CBMS Regional Conf. Ser. Math., No. 35, Amer. Math. Soc., Providence, R. I., 1978. MR 0482842 (58:2888)
 [3]
 M. Braun, Particle motions in a magnetic field, J. Differential Equations 8 (1970), 294332. MR 0264906 (41:9496)
 [4]
 R. Easton, Proc. NSF Conf. on Attractors (Fargo, N. D., June, 1977), SpringerVerlag, New York (to appear). MR 518550 (80j:58051)
 [5]
 J. Franks, Constructing structurally stable diffeomorphisms, Ann. of Math. (2) 105 (1977), 343359. MR 0448434 (56:6740)
 [6]
 A. Manning, Topological entropy and the first homology group, Lecture Notes in Math., No. 468, SpringerVerlag, New York, 1975, pp. 185190. MR 0650661 (58:31266)
 [7]
 J. Moser, Stable and random motions in dynamical systems, Ann. of Math. Studies, No. 77, Princeton Univ. Press, Princeton, N. J., 1973. MR 0442980 (56:1355)
 [8]
 S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747817. MR 0228014 (37:3598)
 [9]
 W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces (to appear). MR 956596 (89k:57023)
 [10]
 R. Williams, Classification of subshifts to finite type, Ann. of Math. (2) 98 (1973), 120153. MR 0331436 (48:9769)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
58F15
Retrieve articles in all journals
with MSC:
58F15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197804942899
PII:
S 00029939(1978)04942899
Keywords:
Subshift of finite type,
twist mapping,
topological entropy
Article copyright:
© Copyright 1978
American Mathematical Society
