Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A note on stable equivalence and Nakayama algebras


Author: Idun Reiten
Journal: Proc. Amer. Math. Soc. 71 (1978), 157-163
MSC: Primary 16A46; Secondary 16A35, 16A64
MathSciNet review: 500481
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two artin algebras $ \Lambda $ and $ \Lambda '$ are said to be stably equivalent if the categories of finitely generated modules modulo projective for $ \Lambda $ and $ \Lambda '$ are equivalent categories.

If $ \Lambda '$ is stably equivalent to a Nakayama (i.e. generalized uniserial) algebra $ \Lambda $, we prove that $ \Lambda $ and $ \Lambda '$ have the same number of nonprojective simple modules. And if $ \Lambda $ and $ \Lambda '$ are stably equivalent indecomposable Nakayama algebras where each indecomposable projective module has length at least 3, then $ \Lambda $ and $ \Lambda '$ have the same admissible sequences.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and I. Reiten, Stable equivalence of artin algebras, Proc. Conf. on Orders, Groups Rings and Related Topics, Lecture Notes in Math., vol 353, Springer-Verlag, New York, 1973. MR 0335575 (49:356)
  • [2] -, Stable equivalence of dualizing R-varieties. V, Advances in Math. 17 (1975), 167-195. MR 0404243 (53:8046)
  • [3] -, Representation theory of artin algebras. IV: Invariants given by almost split sequences, Comm. Algebra 5 (1977), 443-518. MR 0439881 (55:12762)
  • [4] -, Representation theory of artin algebras. V; Methods for computing almost split sequences and irreducible morphisms, Comm. Algebra 5 (1977), 519-554. MR 0439882 (55:12763)
  • [5] K. R. Fuller, Generalized uniserial rings and their Kupisch series, Math. Z. 106 (1968), 248-260. MR 0232795 (38:1118)
  • [6] K. R. Fuller, J. Haack and H. Hullinger, Stable equivalence of uniserial rings, Proc. Amer. Math. Soc. 68 (1978), 153-158. MR 0463231 (57:3186)
  • [7] J. A. Green, Walking around the Brauer tree, J. Austral. Math. Soc. 17 (1974), 197-213. MR 0349830 (50:2323)
  • [8] H. Kupisch, Beiträge zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung, Crelles J. 201 (1959), 100-112. MR 0104707 (21:3460)
  • [9] I. Reiten, Stable equivalence of dualizing R-varieties. VI. Nakayama dualizing R-varieties, Advances in Math. 17 (1975), 196-211. MR 0404244 (53:8047)
  • [10] -, Correction to my paper on Nakayama R-varieties, Advances in Math. 23 (1977), 211-212. MR 0429983 (55:2991)
  • [11] -, Almost split sequences for group algebras of finite representation type, Trans. Amer. Math. Soc. 233 (1977), 125-136. MR 0573041 (58:28056)
  • [12] -, Algebras stably equivalent to Nakayama algebras of Loewy length at most 4, Austral. Math. Soc. (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A46, 16A35, 16A64

Retrieve articles in all journals with MSC: 16A46, 16A35, 16A64


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1978-0500481-7
Keywords: Nakayama algebra, stable equivalence
Article copyright: © Copyright 1978 American Mathematical Society