Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A note on stable equivalence and Nakayama algebras

Author: Idun Reiten
Journal: Proc. Amer. Math. Soc. 71 (1978), 157-163
MSC: Primary 16A46; Secondary 16A35, 16A64
MathSciNet review: 500481
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two artin algebras $ \Lambda $ and $ \Lambda '$ are said to be stably equivalent if the categories of finitely generated modules modulo projective for $ \Lambda $ and $ \Lambda '$ are equivalent categories.

If $ \Lambda '$ is stably equivalent to a Nakayama (i.e. generalized uniserial) algebra $ \Lambda $, we prove that $ \Lambda $ and $ \Lambda '$ have the same number of nonprojective simple modules. And if $ \Lambda $ and $ \Lambda '$ are stably equivalent indecomposable Nakayama algebras where each indecomposable projective module has length at least 3, then $ \Lambda $ and $ \Lambda '$ have the same admissible sequences.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A46, 16A35, 16A64

Retrieve articles in all journals with MSC: 16A46, 16A35, 16A64

Additional Information

PII: S 0002-9939(1978)0500481-7
Keywords: Nakayama algebra, stable equivalence
Article copyright: © Copyright 1978 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia