Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Almost every quasinilpotent Hilbert space operator is a universal quasinilpotent


Author: Domingo A. Herrero
Journal: Proc. Amer. Math. Soc. 71 (1978), 212-216
MSC: Primary 47A65; Secondary 47B05
MathSciNet review: 500492
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let Q be a quasinilpotent operator acting on a complex separable infinite dimensional Hilbert space; then either $ {Q^k}$ is compact for some positive integer k, or the closure of the similarity orbit of Q contains every quasinilpotent operator. Analogous results are shown to be true for the Calkin algebra and for nonseparable Hilbert spaces. For the nonseparable case, the analogous result is true for the closed bilateral ideal $ \mathcal{J}$, strictly larger than the ideal of compact operators, if and only if $ \mathcal{J}$ is not the ideal associated with an $ {\aleph _0}$-regular limit cardinal. For the ideal of compact operators, the problem remains open.


References [Enhancements On Off] (What's this?)

  • [1] J. Barría and D. A. Herrero, Closure of similarity orbits of nilpotent operators. II (to appear).
  • [2] R. G. Douglas and C. Pearcy, A note on quasitriangular operators, Duke Math. J. 37 (1970), 177-188. MR 0257790 (41:2439)
  • [3] G. Edgar, J. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), 61-80. MR 0417836 (54:5884)
  • [4] C. Foiaş, C. Pearcy and D. Voiculescu, Biquasitriangular operators and quasisimilarity (to appear). MR 501466 (80b:47022)
  • [5] S. Grabiner, Nilpotents in Banach algebras, J. London Math. Soc. (2) 14 (1976), 7-12. MR 0442683 (56:1064)
  • [6] D. A. Herrero, Normal limits of nilpotent operators, Indiana Univ. Math. J. 23 (1974), 1097-1108. MR 0350476 (50:2968)
  • [7] -, Universal quasinilpotent operators, Acta Sci. Math. (Szeged) 38 (1976), 291-300. MR 0442728 (56:1107)
  • [8] -, Clausura de las órbitas de similaridad de operadores en espacios de Hilbert, Rev. Un. Mat. Argentina 27 (1976), 244-260.
  • [9] -, Norm limits of nilpotent operators and weighted spectra in non-separable Hilbert space, Rev. Un. Mat. Argentina 27 (1975), 83-105. MR 0442726 (56:1106a)
  • [10] C. L. Olsen, A structure theorem for polynomially compact operators, Amer. J. Math. 93 (1971), 686-698. MR 0405152 (53:8947)
  • [11] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472. MR 0112040 (22:2898)
  • [12] S. Sakai, $ {C^ \ast }$-algebras and $ {W^ \ast }$-algebras, Ergebnisse der Math. und ihrer Grenzgebiete, Bd. 60, Springer-Verlag, New York and Berlin, 1971. MR 0442701 (56:1082)
  • [13] J. G. Stampfli, Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. (2) 9 (1974), 165-175. MR 0365196 (51:1449)
  • [14] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113. MR 0415338 (54:3427)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A65, 47B05

Retrieve articles in all journals with MSC: 47A65, 47B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0500492-1
Keywords: Nilpotent operator, quasinilpotent operator, similarity orbit, universal quasinilpotent operator, compact operator, Calkin algebra, Voiculescu's noncommutative version of Weyl-von Neumann theorem, representation of $ {C^ \ast }$-algebras, quasitriangular operator, nonseparable Hilbert space, $ {\aleph _0}$-irregular cardinal
Article copyright: © Copyright 1978 American Mathematical Society