K-THEORY AND K-HOMOLOGY RELATIVE TO A II\textsubscript{∞}-FACTOR

IAIN RAEBURN

Abstract. Let X be a compact space and M be a factor of type II\textsubscript{∞} acting on a separable Hilbert space. Let \(K_M(X) \) denote the Grothendieck group generated by the semigroup of isomorphism classes of \(M \)-vector bundles over \(X \), and, if \(X \) is also metric, let \(\text{Ext}^M(X) \) denote the group of equivalence classes of extensions of \(C(X) \) relative to \(M \). We show that \(K_M(X) \) is the direct sum of the even-dimensional Čech cohomology groups of \(X \), and that \(\text{Ext}^M(X) \) is the direct product of the odd-dimensional Čech homology groups of \(X \).

Introduction. Recently Brown, Douglas, and Fillmore [8] have constructed a generalised homology theory called K-homology, which, in a sense made rigorous in [8], is dual to K-theory. Their construction is in terms of extensions of commutative C*-algebras by the ideal of compact operators on a separable Hilbert space. Fillmore [12] and Cho [9] have investigated the analogous construction with the compact operators replaced by the closed two-sided ideal generated by the finite projections in a factor of type II\textsubscript{∞}. They have constructed (see [9]) a generalised homology theory \(\{\text{Ext}^M_n\} \) on the category of compact metric spaces, which we shall call K-homology relative to the II\textsubscript{∞}-factor \(M \). In [6] Breuer has considered a theory of vector bundles relative to \(M \) and introduced a functor \(K_M \) which has topological properties like those of K-theory. We shall construct a generalised cohomology theory \(\{K^n_M\} \) (K-theory relative to \(M \)) from Breuer’s functor, identify it in terms of the conventional K-functor and show that \(K_M(X) \) is the direct sum of the even-dimensional real cohomology of \(X \) for any compact space \(X \). Then we shall deduce the corresponding result for \(\text{Ext}^M \); namely that \(\text{Ext}^M(X) \) is the direct product of the odd-dimensional real homology of \(X \). We mention that the results in this note all follow in standard fashion from the recent literature; our goal is merely to point out some interesting consequences of the work of Breuer [6] and Cho [9]. Along the way we provide a proof of Proposition 2, which has been stated and used by Singer in [18].

First we set up some notation. Throughout, all topological spaces will be Hausdorff, and \(M \) will be a factor of type II\textsubscript{∞} acting on a separable Hilbert space \(H \). We shall denote by \(P_f(M) \) the set of finite projections of \(M \) and by \(\dim: P_f(M) \rightarrow \mathbb{R}^+ \) the Murray-von Neumann dimension function of \(M \). For

Received by the editors November 21, 1977 and, in revised form, January 25, 1978.

details on such matters, we refer to [10]. In addition, we shall write $\mathcal{K}(M)$ for the closed two-sided ideal of M generated by $P_j(M)$, $\mathfrak{H}(M)$ for the quotient algebra $M/\mathcal{K}(M)$ and $\mathfrak{S}(M)$ for the set of operators which are Fredholm relative to M (cf. [5]). Our terminology as regards K-theory will be that of [1]. By a generalised (Čech) cohomology theory on compact pairs, we shall mean a sequence $\{K^n\}$ of contravariant functors which satisfy the three axioms of continuity, excision and exactness (cf. [20, §1]). We observe that continuous functors are necessarily homotopy invariant [20, Theorem 2.1], so that such theories satisfy the first six of the Eilenberg-Steenrod axioms. We shall need the following lemma.

Lemma. If $\mu: \{H^n\} \to \{K^n\}$ is a natural transformation between generalised cohomology theories such that $\mu: H^n(X) \to K^n(X)$ is an isomorphism for all n when X is a point, then μ is a natural equivalence.

Proof. That μ is an equivalence on compact polyhedra follows from the argument of [19, Theorem 4.8.10]. But every compact space is the inverse limit of spaces with the homotopy type of compact polyhedra [19, Lemma 6.6.7], and so the result holds on the category of compact spaces.

1. Let X be a compact space. Breuer [6] introduced the notion of an M-vector bundle over X—namely, a Hilbert space bundle over X whose transition functions take values in M and whose fibres are of the form $E(H)$ for some E belonging to $P_j(M)$. The set $\text{Vect}_M(X)$ of M-isomorphism classes of M-vector bundles over X is a semigroup under direct sum; if f is a continuous map from Y to X, then f induces (via pull-back of bundles) a semigroup homomorphism $f^*: \text{Vect}_M(X) \to \text{Vect}_M(Y)$. If we denote the Grothendieck group of $\text{Vect}_M(X)$ by $K_M(X)$, then K_M is a contravariant functor from compact spaces to abelian groups. If X is a compact space with distinguished base point x_0, and $i: \{x_0\} \to X$ is the inclusion, then we write $\tilde{K}_M(X)$ for the kernel of the map $i^*: K_M(X) \to K_M(\{x_0\})$. Breuer proved that K_M is homotopy invariant, and that $K_M(X)$ is a module over the ring $K(X)$; it is easy to check from the definition [6, p. 417] that this module action is natural. The main result of Breuer’s article is the periodicity theorem for K_M; namely that for any locally compact space X, $K_M(\mathbb{R}^2 \times X) \cong K_M(X)$, where for Y locally compact $K_M(Y)$ stands for the reduced group $\tilde{K}_M(Y \cup \{\infty\})$ of the one point compactification of Y. This isomorphism is natural since the inverse β_X is defined in terms of the module action.

We define $K_M^n(X) = K_M(\mathbb{R}^n \times X)$ (for $n > 0$) and, inductively, $K_M^n(X) = K_M^{n-2}(X)$ for positive n. If for a compact pair (X, Y) we now set $K_M^n(X, Y) = \tilde{K}_M^n(X/Y)$ (the base point is Y/Y) then $\{K_M^n\}$ is a sequence of contravariant functors from compact pairs to abelian groups.

Proposition 1. $\{K_M^n\}$ is a generalised cohomology theory on compact pairs.

Proof. That $\{K_M^n\}$ satisfies excision is obvious. To verify continuity and exactness we shall use the theorem of Breuer that $K_M(X) \cong [X, \mathfrak{S}(M)]$ (see
(6, Theorem 1, p. 414)); an inspection of Breuer’s construction yields that the isomorphism is natural. Since \(\mathcal{T}(M) \) is an open set in the Banach space \(M \) ([5, II, Corollary 2 to Theorem 1]), \(\mathcal{T}(M) \) and its loop spaces \(\Omega^n \mathcal{T}(M) \) are ANR’s (cf. [14, Chapter 1]). It follows from the periodicity theorem that \(\pi_n(\mathcal{T}(M)) = \pi_n(\Omega^n \mathcal{T}(M)) \) for every \(n > 0 \), and so \(\mathcal{T}(M) \) and \(\Omega^n \mathcal{T}(M) \) are homotopy equivalent by [17, Theorem 15]. Thus \(\{ K^n_M \} \) is given by a spectrum, and so by [21, §5] satisfies the exactness axiom on finite complexes. We can deduce that \(K_M \) is continuous from the fact that \(\mathcal{T}(M) \) is an ANR, and the result follows.

If \(X \) is a compact space, \(r \in \mathbb{R}^+ \) and \(E \in P_f(M) \) satisfies \(\dim E = r \), then, as in the construction of the module action ([6, p. 417]), there is a map \(\lambda: \text{Vect}(X) \to \text{Vect}_M(X) \) given by \(\lambda(a) = a \otimes (X \times E(H)) \). Thus there is a pairing \((a, r) \to \lambda(a): \text{Vect}(X) \otimes \mathbb{R}^+ \to \text{Vect}_M(X) \) which induces a natural transformation \(\lambda: K(\cdot) \otimes \mathbb{Z} \to K_M(\cdot) \). We observe that \(\lambda: K(X) \otimes \mathbb{R} \to K_M(X) \) is an isomorphism when \(X \) is a one point space.

Proposition 2 (Singer). The functors \(K(\cdot) \otimes \mathbb{Z} \mathbb{R} \) and \(K_M(\cdot) \) are naturally equivalent (via \(\lambda \)) on the category of compact spaces. In particular, \(K_M(\cdot) \) is independent of the factor \(M \).

Proof. The functors \(K^* \) form a generalised cohomology theory, and this implies that \(K^*(\cdot) \otimes \mathbb{Z} \mathbb{R} \) do also. For clearly \(K^n(\cdot) \otimes \mathbb{R} \) is a sequence of contravariant functors satisfying the excision axiom; the exactness axiom for \(K(\cdot) \otimes \mathbb{R} \) follows since \(\mathbb{R} \) is torsion-free and the continuity axiom follows since tensoring with \(\mathbb{R} \) commutes with direct limits ([3, pp. 33–34]). Let \(X \) be a compact space and let \(\text{Per}: K(X) \to K(\mathbb{R}^2 \times X) \) and \(\text{Per}_M: K_M(X) \to K_M(\mathbb{R}^2 \times X) \) denote the periodicity maps of \(K \)-theory and \(K_M \)-theory respectively. Then \(\text{Per} \) is given by taking the external product with the Bott element \(b \in K(\mathbb{R}^2) \) ([4, p. 118]), and \(\text{Per}_M \) is the analogous external product for \(K_M \)-theory with the same element \(b \in K(\mathbb{R}^2) \) ([6, p. 426]). It follows from elementary properties of the external product (cf. [6, §4.11]) that the diagram

\[
\begin{align*}
K(X) \otimes \mathbb{R} & \xrightarrow{\text{Per} \otimes \text{id}} K(\mathbb{R}^2 \times X) \otimes \mathbb{R} \\
\downarrow \lambda & \quad \downarrow \lambda \\
K_M(X) & \xrightarrow{\text{Per}_M} K_M(\mathbb{R}^2 \times X)
\end{align*}
\]

commutes. Hence \(\lambda \) can be extended to give a natural transformation between the generalised cohomology theories \(K^*(\cdot) \otimes \mathbb{R} \) and \(K_M^*(\cdot) \). As observed above \(\lambda: K^n(\text{pt}) \otimes \mathbb{R} \to K_M^n(\text{pt}) \) is an isomorphism when \(n = 0 \); since every \(M \)-vector bundle on \(S^1 \) is trivial ([6, Corollary 2, p. 404]) it is also an isomorphism for \(n = -1 \), and it follows that \(\lambda \) is an isomorphism for all \(n \in \mathbb{Z} \). The results now follow from the lemma in the introduction.

It is a standard result in \(K \)-theory that for a compact space \(X \), \(K(X) \otimes \mathbb{R} \) is the direct sum of all the groups \(H^p(X; \mathbb{R}) \) for \(p \) even, where \(H^p(X; \mathbb{R}) \) denotes the \(p \)th Čech cohomology group of \(X \) with real coefficients. (This is a consequence of [2, p. 19] and the universal coefficient theorem. A more
elementary proof is contained in [1, §3.2]; here, however, we have to invoke the Eilenberg-Steenrod uniqueness theorem to deduce that the \(H^p \)'s are in fact Čech cohomology.) It now follows immediately from Proposition 2 that:

Corollary 3. For any compact space \(X \) there is a natural isomorphism

\[
K_M(X) \cong \bigoplus \{ H^p(X; \mathbb{R}) : p \text{ even}, p > 0 \}.
\]

2. Let \(X \) be a compact metric space. An extension of \(C(X) \) relative to \(M \) is a unital *-monomorphism \(\tau : C(X) \to \mathbb{A}(M) \). Two such extensions \(\tau_1, \tau_2 \) are equivalent if there is an inner automorphism \(\alpha \) of \(M \) (which maps \(\mathbb{K}(M) \) onto \(\mathbb{K}(M) \) and so induces an automorphism \(\tilde{\alpha} \) of \(\mathbb{A}(M) \)) with \(\tau_2 = \tilde{\alpha} \circ \tau_1 \). The set \(\text{Ext}^M(X) \) of equivalence classes of extensions of \(C(X) \) relative to \(M \) is a group (see [12]), is a homotopy invariant functor of the space \(X \) and can be used to define a generalised homology theory (see [9]). Cho also proves in [9] that \(\text{Ext}^M \) is naturally equivalent to \(\text{Hom}(\tilde{K}(\cdot)), \mathbb{R}) \)–and so is independent of \(M \).

Proposition 4. For any compact metric space \(X \) there is a natural isomorphism

\[
\text{Ext}^M(X) \cong \prod \{ H_p(X; \mathbb{R}) : p \text{ odd}, p > 1 \}
\]

where \(H_p(X, \mathbb{R}) \) denotes the \(p \)th Čech homology group of \(X \) with real coefficients.

Proof. First we suppose that \(X \) is a compact polyhedron. By the main theorem of [9], \(\text{Ext}^M(X) \cong \text{Hom}(\tilde{K}(SX); \mathbb{R}) \) where \(SX \) denotes the unreduced suspension of \(X \). This in turn can be identified with \(\text{Hom}_R(\tilde{K}(SX) \otimes \mathbb{R}, \mathbb{R}) \), which is isomorphic to \(\text{Hom}_R(\bigoplus_{p \text{ even}} \tilde{H}^p(SX; \mathbb{R}), \mathbb{R}) \) by Corollary 3. Since \(X \) is a compact polyhedron \(\text{Hom}(\tilde{H}^p(SX); \mathbb{R}) \cong H_p(SX) \) [13, 23.14] and so \(\text{Ext}^M(X) \cong \prod_{p \text{ even}} \tilde{H}_p(SX; \mathbb{R}) \). But \(\tilde{H}_p(SX) \cong H_{p-1}(X) \), and we have the result for compact polyhedra. The general case now follows by observing that both \(\text{Ext}^M \) and \(\prod H_p(\cdot, \mathbb{R}) \) are continuous functors [9, Corollary 1].

Remarks. Although the Čech homology theory \(H_\ast(\cdot, G) \) with coefficients in an abelian group \(G \) satisfies the continuity axiom, it does not in general have a long exact sequence; the appropriate theory for compact metric spaces is Steenrod homology, denoted \(^sH_\ast(\cdot, G) \). In addition to the seven Eilenberg-Steenrod axioms, \(^sH_\ast \) satisfies the relative homeomorphism axiom and the cluster axiom (see [15] or [16]), and is characterised uniquely by these axioms [16, Theorem 3]. For an arbitrary coefficient group Čech homology satisfies all these axioms except exactness; however, when the coefficient group is \(\mathbb{R} \), Čech homology is exact [11, Theorem IX.7.6] and so coincides with Steenrod homology on compact metric spaces. Thus the last proposition is valid with the Čech groups \(H_\ast(X; \mathbb{R}) \) replaced by the corresponding Steenrod groups.
For further details on the relationships between Čech and Steenrod homology we refer to [15] and [16]; the Čech theory is discussed in detail in [11].

In [9] Cho proves the Ext^f is a generalised Steenrod theory which is also continuous; hence Ext^f is also a generalised Čech theory. (Here by a generalised theory we mean one which satisfies all the appropriate axioms except dimension; the axioms for Čech homology are given in [11, Chapter X].) This is not the case for the Brown-Douglas-Fillmore theory Ext^f; it is a generalised Steenrod theory but is not continuous—in fact Brown [7] has shown that it fails to be continuous in the same way as the Steenrod homology theory. This is discussed in [15].

ACKNOWLEDGEMENT. The author would like to thank Peter Fillmore for some helpful comments.

REFERENCES

School of Mathematics, University of New South Wales, P. O. Box 1, Kensington, N.S.W. 2033, Australia