Partitions into chains of a class of partially ordered sets

Authors:
N. Metropolis, Gian-Carlo Rota, Volker Strehl and Neil White

Journal:
Proc. Amer. Math. Soc. **71** (1978), 193-196

MSC:
Primary 06A10; Secondary 05B99

MathSciNet review:
0551483

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let a cube of side *k* in be dissected into unit cubes. The collection of all affine subspaces of determined by the faces of the unit cubes forms a lattice when ordered by inclusion. We explicitly construct a Dilworth partition into chains of .

**[1]**N. de Bruijn, C. A. van E. Tengbergen and D. R. Kruyswijk,*On the set of divisors of a number*, Nieuw Arch. Wisk. (2)**23**(1952), 191-193. MR**0043115 (13:207f)****[2]**R. P. Dilworth,*A decomposition theorem for partially ordered sets*, Ann. of Math. (2)**51**(1950), 161-166. MR**0032578 (11:309f)****[3]**Curtis Greene and D. J. Kleitman,*Proof techniques in the theory of finite sets*, MAA Studies in Combinatorics (to appear). MR**513002 (80a:05006)****[4]**J. R. Griggs,*Symmetric chain orders, Sperner theorems, and loop matchings*, M.I.T. doctoral thesis, 1977.**[5]**L. H. Harper and G.-C. Rota,*Matching theory, an introduction*, Advances in Probability, Vol. 1, Dekker, New York, 1970, pp. 171-217. MR**0282855 (44:89)****[6]**N. Metropolis and G.-C. Rota,*Combinatorial structure of the faces of the n-cube*, Bull. Amer. Math. Soc.**84**(1978), 284-286. MR**0462997 (57:2961)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
06A10,
05B99

Retrieve articles in all journals with MSC: 06A10, 05B99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0551483-6

Article copyright:
© Copyright 1978
American Mathematical Society