LOCAL p-SIDON SETS FOR LIE GROUPS

A. H. DOOLEY AND PAOLO M. SOARDI

ABSTRACT. It is shown that a compact Lie group admits no local p-Sidon sets of unbounded degree.

Let G be a compact group, and let $1 < p < 2$. A subset R of the dual of G is called a local p-Sidon set if there exists a constant B such that for every $\sigma \in R$ and for every $d_0 \times d_0$ matrix A_σ,

$$\|A_\sigma\|_p \leq Bd_0^{1/p}\|\text{tr} A_\sigma(\cdot)\|_\infty.$$ (1)

THEOREM. If G is a compact Lie group, and if R is a local p-Sidon set for G, then $\sup\{d_0|\sigma \in R\} < \infty$.

PROOF. We first note that, if G is an arbitrary compact group, R is a p-Sidon set for G, and if $r > 1$, then there exists a constant κ_r such that for all $\sigma \in R$

$$\|\chi_\sigma\|_r \leq \kappa_r d_0^{2/r}$$ (2)

where $\chi_\sigma(x) = \text{tr}(\sigma(x))$.

To see this, we first use a simple duality argument to see that (1) is equivalent to: there exists a constant C such that for every $\sigma \in R$ and for every $d_0 \times d_0$ matrix A_σ, there exists $g \in L^1(G)$ such that $\hat{g}(\sigma) = A_\sigma$, and $\|g\|_1 \leq Cd_0^{1/p}\|A_\sigma\|_p$. Thus for every $\sigma \in R$ and for every $d_0 \times d_0$ unitary matrix W, there exists $g_W \in L^1(G)$ with $\hat{g}_W = W^*$, and $\|g_W\|_1 \leq Cd_0^{1/p}\|W^*\|_p = d_0^{2/p}$. Since $\chi_\sigma = g_W \ast (\text{tr}(W \cdot \sigma(x)))$ we have

$$\|\chi_\sigma\|_r \leq \|g_W\|_1 \left(\int_G |\text{tr}(W \cdot \sigma(x))| \, dx\right)^{1/r}$$

$$\leq Cd_0^{2/p}\left(\int_G |\text{tr}(W \cdot \sigma(x))| \, dx\right)^{1/r}.$$ (3)

Hence, integrating over the $d_0 \times d_0$ unitary group, $\mathcal{U}(d_0)$ with respect to normalized Haar measure dW, and using Hölder's inequality, we obtain

$$\|\chi_\sigma\|_r \leq Cd_0^{2/p}\left(\int_G \int_{\mathcal{U}(d_0)} |\text{tr}(W \cdot \sigma(x))| \, dW \, dx\right)^{1/r}$$

$$= Cd_0^{2/p}\left(\int_{\mathcal{U}(d_0)} |\text{tr} W| \, dW\right)^{1/r}.$$
The last equality follows from the translation invariance of dW. It is easily established, however (cf. [2, (29.12)]), that there exists a bound K_r, independent of d, for $(\int |W|^r dW)^{1/r}$. Thus we obtain (2).

Suppose now that G is a compact Lie group. In [1, Theorem (5.4)], the following estimate is given for the r-norms of the irreducible characters; let $M_G \in \mathbb{R}$ be as in [1, (5.5)]. Then for $r > M_G$, there exists a constant κ, such that

$$\kappa d^{1-M_G/r}_\sigma \leq \|\chi_\sigma\|_r. \quad (3)$$

From (2) and (3), it follows that, for all $r > M_G$, $\sup_{\sigma \in \pi} d^{1-2/p'-M_G/r}_\sigma < \infty$, and hence, since $p < 2$, $\sup_{\sigma \in \pi} d_\sigma < \infty$. □

It follows that, if G is a compact semisimple Lie group, G has no infinite local p-Sidon sets.

It should be noted that a set R with $\sup \{d_\sigma | \sigma \in R\} < \infty$ is local Sidon and hence local p-Sidon for all p [3].

REFERENCES

4. P. M. Soardi, $\mathcal{S}_{\mathbb{R}_2}$ has no infinite local p-Sidon sets (preprint).

SCHOOL OF MATHEMATICAL SCIENCES, THE FLINDERS UNIVERSITY OF SOUTH AUSTRALIA, BEDFORD PARK, S.A., 5042, AUSTRALIA

ISTITUTO MATHEMATICO DELL’UNIVERSITÀ, VIA SALDINI 50, 20133 MILANO, ITALY