Resultant operators of a pair of analytic functions

Authors:
I. C. Gohberg and L. E. Lerer

Journal:
Proc. Amer. Math. Soc. **72** (1978), 65-73

MSC:
Primary 47B35

DOI:
https://doi.org/10.1090/S0002-9939-1978-0493487-8

MathSciNet review:
0493487

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The well-known results on resultant of polynomials and its continuous analogue is generalized for some classes of analytic functions.

**[1]**I. Ts. Gokhberg and I. A. Fel′dman,*\cyr Uravneniya v svertkakh i proektsionnye metody ikh resheniya.*, Izdat. “Nauka”, Moscow, 1971 (Russian). MR**0355674****[2]**I. C. Gohberg and G. Haĭnig,*The resultant matrix and its generalizations. I. The resultant operator for matrix polynomials*, Acta Sci. Math. (Szeged)**37**(1975), 41–61 (Russian). MR**0380471****[3]**I. C. Gohberg and G. Haĭnig,*The resultant matrix and its generalizations. II. The continual analogue of the resultant operator*, Acta Math. Acad. Sci. Hungar.**28**(1976), no. 3-4, 189–209 (Russian). MR**0425652**, https://doi.org/10.1007/BF01896778**[4]**I. C. Gohberg and L. E. Lerer,*Resultants of matrix polynomials*, Bull. Amer. Math. Soc.**82**(1976), no. 4, 565–567. MR**0407048**, https://doi.org/10.1090/S0002-9904-1976-14103-1**[5]**M. G. Kreĭn,*Integral equations on the half-line with a kernel depending on the difference of the arguments*, Uspehi Mat. Nauk**13**(1958), no. 5 (83), 3–120 (Russian). MR**0102721**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B35

Retrieve articles in all journals with MSC: 47B35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0493487-8

Keywords:
Common zeroes,
resultant matrix,
Wiener-Hopf pair operator,
factorization

Article copyright:
© Copyright 1978
American Mathematical Society