Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bundle shifts and Ahlfors functions


Authors: M. B. Abrahamse and J. J. Bastian
Journal: Proc. Amer. Math. Soc. 72 (1978), 95-96
MSC: Primary 47B37
DOI: https://doi.org/10.1090/S0002-9939-1978-0503539-1
MathSciNet review: 503539
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If S is a bundle shift over R with multiplicity k, if the boundary of R has n components, and if $ \phi $ is the Ahlfors function for a point in R, then $ \phi (S)$ is a unilateral shift of multiplicity kn. It follows that a reductive algebra containing the rational algebra of a bundle shift of finite multiplicity is selfadjoint.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B37

Retrieve articles in all journals with MSC: 47B37


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0503539-1
Keywords: Bundle shift, Ahlfors function, subnormal operator, transitive algebra, reductive algebra, hyperinvariant subspace
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society