ON THE SIERPIŃSKI-ERDÖS AND THE OXTOBY-ULAM THEOREMS FOR SOME NEW SIGMA-IDEALS OF SETS

C. G. MENDEZ

Abstract. Let $\Phi(\Psi)$ denote the family of subsets of the unit square defined to be of first category (Lebesgue measure zero) in almost every vertical line in the sense of measure (category). Theorem 1. There is a homeomorphism of the unit square onto itself mapping a given set in $\Phi(\Psi)$ onto a set of Lebesgue measure zero. Theorem 2. There is a set belonging to both Φ and Ψ that cannot be mapped onto a set of first category by a homeomorphism of the unit square onto itself.

Let C denote the Cantor set, regarded as the product of a sequence of 2-element groups, and let Λ denote one of the σ-ideals of subsets of C studied by Schmidt and Mycielski. Theorem 3. Assuming the continuum hypothesis, the Sierpinski-Erdös theorem holds for Λ and the class of subsets of C of Haar measure zero (or of first category). Theorem 4. The Oxtoby-Ulam theorem holds for the image of Λ under the Cantor mapping of C onto the unit interval.

1. On the Sierpinski-Erdös theorem. This section is inspired by the work of Schmidt [8] and Mycielski [4] on σ-ideals of sets on C (the Cantor set), or for that matter on I (the unit interval).

In correspondence with Mycielski's definition we have: Given a set $S \subseteq C$ and a set K of natural numbers we define a positional game $\Gamma(S, K)$ with perfect information between two players I and II. The players choose consecutive terms of a sequence $(x_0, x_1, x_2, \ldots) \in C$ (where C is hereby regarded as the topological space $(\prod_{i=1}^\infty X_i, \prod_{i=1}^\infty T_i)$, $X_i = (0, 1)$, and T_i is the discrete topology on X_i), the choice x_i is made by player I if $i \in K$, and by player II if $i \notin K$. The player choosing x_i knows S, K, and $x_0, x_1, \ldots, x_{i-1}$.

Player I wins if $(x_0, x_1, x_2, \ldots) \in S$, and player II wins in the other case.

Let $W_{II}(K)$ be the class of sets $S \subseteq C$ for which player II has a winning strategy in the game $\Gamma(S, K)$. Let $M = \{K_{s_1, s_2, \ldots, s_n} : s_i = 0, 1; 1 \leq i \leq n, n \in J\}$ be a system of sets of natural numbers such that $K_{s_1, s_2, \ldots, s_n, s_{n+1}}$ is...
contained in \(K_{s_1,s_2,\ldots,s_n} \) and \(K_{s_1,s_2,\ldots,s_{n-1},0} \cap K_{s_1,s_2,\ldots,s_{n-1},1} = 0 \) for \(n \in J \). Let
\[\Lambda = \bigcap \mathcal{W}_n(K_{s_1,s_2,\ldots,s_n}) \]
where the intersection runs over all the sets \(K_{s_1,s_2,\ldots,s_n} \)
of the system \(M \). We shall assume that all sets \(K_{s_1,s_2,\ldots,s_n} \) of the system \(M \) are
nonempty and hence infinite.

Now we would like to show the following properties for \(\Lambda \).

1.1 Theorem. (i) \(\Lambda \) is \(\sigma \)-ideal.

(ii) The union of \(\Lambda \) is \(C \).

(iii) The complement of each member of \(\Lambda \) contains a set of power \(c \) belonging
to \(\Lambda \).

(iv) \(C \) may be represented as the union of two complementary Borel sets one in
\(\Lambda \) and the other one of first category and measure zero where the measure in \(C \)
is the Haar measure; or equivalently, the measure induced by the Lebesgue
measure in the unit interval \(I \) and the Cantor mapping of \(C \) onto \(I \).

(v) There is a subclass \(T \) of power \(< c \) of \(\Lambda \) such that each member of \(\Lambda \) is
contained in some member of the subclass \(T \).

Proof. (i) Shown in Mycielski’s paper as Theorem 3.

(ii) Obvious from Theorem 4 in Mycielski’s paper.

(iii) Given \(S \in \Lambda \) we define the set \(A \) as follows:

\[A = \{ x : x = (x_0, x_1, x_2, \ldots) \in A = x_0 = f_0(x_0, x_1, x_2, \ldots, x_{n-1}) \} \]

where \(K_{s_1,s_2,\ldots,s_n} \) may be thought of as a well ordered subset of the
set of natural numbers and \(\{f_0\}_{\mu \in K_0} \) is a winning strategy for player II in
game \(\Gamma(S,K_0) \), and \(x_0 = x_0, x_2, \ldots, x_n = 0 \) for all \(n \in J \) and \(\{1, s_2, \ldots, s_n\} \).

We would like to show:

(a) \(A \subset S^c \),

(b) \(A \in \Lambda \),

(c) \(A \) is of power \(c \).

Proof of (a). \(x = (x_0, x_1, \ldots) \in A \Rightarrow x = x_0 = f_0(x_0, x_1, x_2, \ldots, x_{n-1}) \) \(\in \{f_0\}_{\mu \in K_0} \) is a winning strategy for player II in game \(\Gamma(S,K_0) \). (This is possible for there is such a winning strategy for \(S \in \Lambda \).) Hence \(x \in S^c \).

Proof of (b). To show that for any given \(K_{s_1,s_2,\ldots,s_n} \in M \), there is a
winning strategy \(\{g_j\}_{j \in K_{s_1,s_2,\ldots,s_n}} \) for player II in game \(\Gamma(A,K_{s_1,s_2,\ldots,s_n}) \). If

\[K_{s_1,s_2,\ldots,s_n} \subset K_0 \]

then \(f_{\mu_1,s_2,\ldots,s_n} = f_0 \) for some \(i \); and we define \(g_j \) such that

\[x_{\mu} = g_j(x_0, x_1, x_2, \ldots, x_{n-1}) \]

for that \(i \), hence \(x = (x_0, \ldots, x_{n-1}, x_{n}) \not\in A \).

On the other hand, if \(K_{s_1,s_2,\ldots,s_n} \in K \) \((K_{s_1,s_2,\ldots,s_n} = K_{s_1,s_2,\ldots,s_n}) \), then define

\[x_{\mu} = g_j(x_0, x_1, x_2, \ldots, x_{n-1}) = 1 \neq 0, \]

hence \(x = (x_0, x_1, \ldots, x_{n}) \not\in A \).
Proof of (c). Define
\[I_n = \bigcup_{1,s_2,\ldots,s_n: K_{1,s_2},\ldots,s_n \in M} \{ j_k^{1,s_2,\ldots,s_n}: k < n \text{ and } x \in A \Rightarrow x_{j_k^{1,s_2,\ldots,s_n}} = 0 \} \]
and
\[J_n = \bigcup_{1,s_2,\ldots,s_n: K_{1,s_2},\ldots,s_n \in M} \{ j_k^{1,s_2,\ldots,s_n}: k < n \} \]
then the power of \(I_n < 2^0 + 2^1 + 2^2 + \cdots + 2^{n-2} \), and the power of \(J_n = (n - 1)2^{n-1} \).
That is, the power of \(I_n < 2^{n-1} \), and the power of \(J_n > 2^n \) for \(n > 4 \). Hence there is a sequence of integers \(\{ j_n \}_{n=4}^{\infty} \) such that \(j_n \neq j_i, i < n, j_n \in J_n \), and \(j_n \notin I_n \), since \(2^{n-1} + (n - 4) < 2^n, n > 4 \).
Therefore \(x_n \) may be chosen to be 0 or 1 for any \(x \) such that
\[x_n = (j_{n-1}^{1,x_0,x_1,\ldots,x_{n-2}}) \quad \text{and} \quad x_{j_n^{1,s_2,\ldots,s_n}} = 0. \]
That is, the power of \(A \) is \(c \).
(iv) As in Mycielski's paper we define \(S_M \) to be the set of all \(x = (x_0, x_1, \ldots) \in C \) such that for every \(K_{x_0,x_1,\ldots,s_n} \) of \(M \) there is some \(i \in K_{x_0,x_1,\ldots,s_n} : x_i = 0 \). Then the proof of (iv) is obvious.
(v) Obvious from Theorem 10 in Mycielski's paper. Q.E.D.

1.2 Theorem. Assuming the continuum hypothesis, the Sierpiński-Erdős theorem is satisfied for \(A \) and the class of sets of measure zero (first category) in \(C \) as defined above.

Proof. 1.1 Theorem and [5, p. 76, Theorem 19.6]. Q.E.D.

2. On the Oxtoby-Ulam theorem.

A. On mixed sigma-ideals. In 1938 J. C. Oxtoby and S. M. Ulam [6] used to so-called category method to show the existence of a homeomorphism of the unit interval onto itself mapping a given set of first category onto a set of measure zero [5, p. 50]. In this section we shall show the corresponding counterparts of this statement for \(\Phi(\Psi) \) (the family of subsets of the unit square defined to be of first category (Lebesgue measure zero) in almost every vertical line in the sense of measure (category) [3, pp. 124–128] employing a similar technique based on an argument provided by the same authors in proving a generalization of the same theorem in 1941 [7, p. 912].

2.1 Theorem. There is a homeomorphism of the unit square onto itself mapping a given set in \(\Phi(\Psi) \) onto a set of measure zero.

Proof. If \(K \in \Phi \) then there is a measure zero set \(S \) in \(I \) such that \(K_x \) is of first category for every \(x \) in \(I - S \). Moreover, \(K \) may be represented as the union of two complementary sets: \(A = \{(x,y) \in K' : x \in I - S \} \) and \(B = \{(x,y) \in K : x \in S \} \), such that \(K \subset A \cup (S \times I) \), \(I^2 - (S \times I) \) (where \(I^2 = I \times I \)) is dense in \(I^2 \) (for \(S \times I \) is a set of measure zero) and \(A_x \) is of first category for every \(x \).
Now, let $I^2(x) = \{(x, y) \in I^2, \text{ for some fixed } x \in I\}$, then for every $x \in I - S$ there is a sequence $\{P_n^x\}^\infty_{n=1}$ of perfect subsets of $I^2(x)$ contained in $I^2 - (A \cup (S \times I))$ whose union is dense in $I^2(x)$ [7, p. 912].

Now, let us consider the countable double sequence P_n^d, $n \in J$, $d \in D$, where D is any countable dense subset of $I - S$ (this is possible, for $I - S$ is a separable metric space as a subset space of I) of perfect subsets of $I^2(d)$, and hence of I^2 (for $I^2(d)$ is a closed subset of I^2); contained in $I^2 - (A \cup (S \times I))$, and hence in $I^2 - K$; whose union is dense in $D \times I$ and therefore in I^2 (since $D \times I$ is dense in I^2). Therefore we have exhibited a sequence of perfect subsets of I^2 contained in the complement of K whose union is dense in I^2 and established an equivalent condition to this theorem [7, p. 912]. A similar argument for Ψ shall be omitted. Q.E.D.

2.2 Theorem. There is a set belonging to both Φ and Ψ that cannot be mapped onto a set of first category by a homeomorphism of the unit square onto itself.

Proof. $I^2 = (A \times A) \cup (B \times B) \cup (A \times B) \cup (B \times A)$, where $\{A, B\}$ denotes a partition of I into an F_σ set of first category and a G_δ set of measure zero [5, p. 5]. And hence, $(A \times A) \cup (B \times B) \in \Phi(\Psi)$ and not of first category in I^2 (for $(A \times B) \cup (B \times A)$ the complement of $(A \times A) \cup (B \times B)$ is of first category [5, pp. 54, 57]). Therefore, no homeomorphic image of $(A \times A) \cup (B \times B)$ is of first category in I^2; and hence, the corresponding counterpart of the Oxtoby-Ulam theorem fails. Q.E.D.

B. On the ideals of Schmidt and Mycielski. Throughout the rest of this section, B shall define the binary sequence of subsets of $[0, 1]$ with the right-hand end points (except 1) excluded; that is, B_n is the set of points in $[0, 1]$ whose nth binary digit is 1, taking the terminating expansion in the case of dyadic rationals, except for 1. More formally, $B_n = \{x: (x_1, x_2, \ldots, x_{n-1}, 1, x_{n+1}, \ldots) \in [0, 1]: x_i = 0, 1$ and there is no $m \in J$: $x_i = 1$, for $i > m$, except for $x = 1\}$. Moreover, $c_B(I)$ shall identify the image of I in C under the Marezewski function of the binary sequence B, given by:

$$c_B(x) = \sum_{n=1}^{\infty} \frac{2\chi_{B_n}(x)}{3^n}, \quad x \in I,$$

and χ_{B_n} the characteristic function of B_n, for all $B_n \in B$ [9, p. 210].

Note that c_B^{-1} is the restriction of the Cantor function to $c_B(I)$ which turns out to be the Cantor set with the left-hand endpoints of the contiguous intervals removed. Hence, c_B^{-1} is a one-to-one and continuous function from $c_B(I)$ onto I.

Since the Oxtoby-Ulam theorem takes place in I, we shall redefine our σ-ideal Λ as the collection $\xi = \{c_B^{-1}(S \cap c_B(I)): S \in \Lambda\}$ of subsets of I.

2.3 Theorem. ξ is a σ-ideal of subsets of I.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
PROOF. Given a sequence S_n in Λ,

$$
\bigcup_n c_B^{-1}(S_n \cap c_B(I)) = c_B^{-1}\left(\bigcup_n (S_n \cap c_B(I))\right) = c_B^{-1}\left(\bigcup_n S_n \cap c_B(I)\right) \in \xi,
$$

for $\bigcup S_n$ is in Λ (Λ being a σ-ideal).

Moreover, if $T \subset c_B^{-1}(S \cap c_B(I))$, for a given set S in Λ, then

$$
c_B(T) \subset c_B\left(c_B^{-1}(S \cap c_B(I)) \right) = S \cap c_B(I) \subset S,
$$

for c_B^{-1} is one-to-one. Hence, $c_B(T)$ is in Λ, for S is in Λ (Λ being a σ-ideal).

But

$$
T = c_B^{-1}(c_B(T)) = c_B^{-1}(c_B(T) \cap c_B(I))
$$

for c_B^{-1} is onto, and hence T is in ξ. Q.E.D.

2.4 Theorem. Given S in C such that S is in Λ, then there is a sequence of perfect subsets of C contained in the complement of S whose union is dense in C.

PROOF. Given S in Λ, and K_{i_1,i_2,\ldots,i_n} in M as introduced above we define $P_{i_1,i_2,\ldots,i_n} = \{z = (z_0, z_1, \ldots): z_j = 0 \text{ or } 1, \text{ and } z_j = f_j(z_0, z_1, \ldots, z_{j-1}) \text{ for } j \text{ in } K_{i_1,i_2,\ldots,i_n}\}$, where $\{f_j\}_{j \in K_{i_1,i_2,\ldots,i_n}}$ is a winning strategy for player II in game $\Gamma(S, K_{i_1,i_2,\ldots,i_n})$.

We would like to show $\{P_{i_1,i_2,\ldots,i_n}\}_{K_{i_1,i_2,\ldots,i_n} \in M}$ is a sequence of perfect subsets of C contained in the complement of S whose union is dense in C.

(a) P_{i_1,i_2,\ldots,i_n} is closed.

PROOF OF (a). If x is in the complement of P_{i_1,i_2,\ldots,i_n}, then $x_j \neq f_j(x_0, x_1, \ldots, x_{j-1})$ for some j in K_{i_1,i_2,\ldots,i_n}. Moreover, if $N_x = \{y \in I: y_k = x_k, \text{ for all } k < j\}$, then N_x defines a neighborhood of x contained in the complement of P_{i_1,i_2,\ldots,i_n}. Hence, the complement of P_{i_1,i_2,\ldots,i_n} is open.

(b) P_{i_1,i_2,\ldots,i_n} is dense in itself.

PROOF OF (b). Suppose x is in P_{i_1,i_2,\ldots,i_n}, i.e., $x_j = f_j(x_0, x_1, \ldots, x_{j-1})$ for all j in K_{i_1,i_2,\ldots,i_n}, and hence for j in K_{i_1,i_2,\ldots,i_n} such that $j \leq m$, for any m.

Now, given $\epsilon > 0$, choose y to agree with x for finitely and sufficiently many entries (say, $y_j = x_j$ for $j < m$) such that $d(x, y) < \epsilon$. On the other hand, for $j > m$ choose y_j such that $y_j = f_j(y_0, y_1, \ldots, y_{j-1})$ for j in K_{i_1,i_2,\ldots,i_n}, $y_k \neq x_k$ for k equal to the first integer $> m: k \in K_{i_1,i_2,\ldots,i_n}$, and $y_k = x_k$ for all other $k \in K_{i_1,i_2,\ldots,i_n}$. This is possible for K_{i_1,i_2,\ldots,i_n} cannot include every integer from some point on, otherwise K_{i_1,i_2,\ldots,i_n} were to be finite. A contradiction.

Hence $y = (y_0, y_1, \ldots, y_{j-1})$: $y_j = f_j(y_0, y_1, \ldots, y_{j-1})$ for all $j \in K_{i_1,i_2,\ldots,i_n}$, i.e., $y \in P_{i_1,i_2,\ldots,i_n}$ and $x \neq y$.

Therefore, if x is in P_{i_1,i_2,\ldots,i_n}, then x is a limit point of P_{i_1,i_2,\ldots,i_n}.
is dense in C.

Proof of (c). Let $x \in C$. Given $\epsilon > 0$, choose y to agree with x for finitely and sufficiently many entries (say, $y_j = x_j$ for $j \leq m$) such that $d(x, y) < \epsilon$.

Now consider s_1, s_2, \ldots, s_n: $j \in K_{s_1, s_2, \ldots, s_n} \Rightarrow j > m$. This is possible, since $K_{s_1, s_2, \ldots, s_n + 1} \subset K_{s_1, s_2, \ldots, s_n}$ and $K_{s_1, s_2, \ldots, s_n + 1} \cap K_{s_1, s_2, \ldots, s_n - 1} = \emptyset$.

Now define y: $y_j = f_j(y_0, y_1, \ldots, y_{j-1})$, if $j \in K_{s_1, s_2, \ldots, s_n}$ (and note that $j > m$), and $y_j = x_j$ for all $j \notin K_{s_1, s_2, \ldots, s_n}$.

Then

$$y \in P_{s_1, s_2, \ldots, s_n} \Rightarrow y \in \bigcup P_{s_1, s_2, \ldots, s_n}.$$

Therefore, $x \in I$, hence $x \in \bigcup P_{s_1, s_2, \ldots, s_n}$.

Proof of (d). If z is in $P_{s_1, s_2, \ldots, s_n}$, then $z_j = f_j(z_0, z_1, \ldots, z_{j-1})$, $j \in K_{s_1, s_2, \ldots, s_n}$ and hence $z = (z_0, z_1, \ldots)$ is in the complement of S. Q.E.D.

Whether an analogue of the Oxtoby-Ulam theory holds for Λ, that is, whether for each $S \in \Lambda$ there exists an automorphism h of C such that $h(S)$ has Haar measure zero, remains an open question. However, such a theorem holds for ξ.

2.5 Theorem
For each $S \in \zeta$ there is a homeomorphism h of I onto I such that $h(S)$ has Lebesgue measure zero.

Proof. $c_B(S)$ belongs to Λ, hence by 2.4 Theorem there is a sequence $\{P_j\}$ of perfect sets contained in $C - c_B(S)$ whose union is dense in C. Because $C - c_B(I)$ is countable, each of the sets $P_j \cap c_B(I)$ contains a sequence $\{P_{i_j}\}$, $j \in J$, of compact and perfect sets whose union is dense in P_j. Hence $\{P_{i_j}\}$ is a countable family of compact and perfect subsets of $c_B(I) - c_B(S)$ whose union is dense in C. Because c_B^{-1} is one to one and continuous on $c_B(I)$, it follows that $\{c_B^{-1}(P_{i_j})\}$ is a countable family of compact and perfect subsets of $I - S$ whose union is dense in I. The conclusion then follows from [7, p. 912]. Q.E.D.

References
7. ______, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 43 (1941), 874–920.

Department of Mathematical Sciences, Metropolitan State College, Denver, Colorado 80204