An elementary proof of the classification of surfaces in the projective -space
Author:
J. H. C. Creighton
Journal:
Proc. Amer. Math. Soc. 72 (1978), 191-192
MSC:
Primary 54D40
DOI:
https://doi.org/10.1090/S0002-9939-1978-0515780-2
MathSciNet review:
0515780
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A closed surface embeds in the 3-dimensional real projective space if and only if it is orientable or of odd Euler characteristic. The proof given is elementary in the sense that only geometric techniques are used.
- [1] G. E. Bredon and J. W. Wood, Non-orientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83-110. MR 0246312 (39:7616)
- [2] J. H. C. Creighton, Hypersurfaces in lens spaces (to appear).
- [3] E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten (Anhang I, §2), Comment. Math. Helv. 8 (1935), 305-353. MR 1509530
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D40
Retrieve articles in all journals with MSC: 54D40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1978-0515780-2
Keywords:
Real projective 3-space,
surgery
Article copyright:
© Copyright 1978
American Mathematical Society