Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A pseudo differential operator which shifts the wave front set

Authors: Cesare Parenti and Luigi Rodino
Journal: Proc. Amer. Math. Soc. 72 (1978), 251-257
MSC: Primary 35S05
MathSciNet review: 507317
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The note concerns pseudo differential operators in the classes $ L_{\rho ,1}^m,0 < \rho \leqslant 1$. These operators are pseudo-local, but they can displace the wave front set of distributions, as we show by means of an example in $ L_{1,1}^0$.

References [Enhancements On Off] (What's this?)

  • [1] Richard Beals, A general calculus of pseudodifferential operators, Duke Math. J. 42 (1975), 1–42. MR 0367730
  • [2] Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 0388463
  • [3] Lars Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, Enseignement Math. (2) 17 (1971), 99–163. MR 0331124
  • [4] L. Nirenberg, Pseudo-differential operators, Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 149–167. MR 0270217

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35S05

Retrieve articles in all journals with MSC: 35S05

Additional Information

Keywords: Pseudo differential operator, class $ S_{\rho ,\delta }^m$, class $ L_{\rho ,\delta }^m$, pseudo-local operator, wave front set
Article copyright: © Copyright 1978 American Mathematical Society