Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Power bounded strictly cyclic operators


Author: Erik J. Rosenthal
Journal: Proc. Amer. Math. Soc. 72 (1978), 276-280
MSC: Primary 47A65
DOI: https://doi.org/10.1090/S0002-9939-1978-0507322-2
MathSciNet review: 507322
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a power bounded hereditarily strictly cyclic operator on Hilbert space is similar to a contraction. We also show that certain ``almost unitary'' operators are not strictly cyclic.


References [Enhancements On Off] (What's this?)

  • [1] B. Barnes, Operators with a strictly cyclic vector, Proc. Amer. Math. Soc. 41 (1973), 480-486. MR 0344924 (49:9663)
  • [2] M. Embry, Maximal invariant subspaces of strictly cyclic operator algebras, Pacific J. Math. 49 (1973), 45-50. MR 0336386 (49:1161)
  • [3] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc Amer. Math. Soc. 15 (1964), 788-790. MR 0165362 (29:2646)
  • [4] P. Ghatage, Generalized algebraic operators, Proc. Amer. Math. Soc. 52 (1975), 232-236. MR 0374961 (51:11157)
  • [5] R. P. Halmos, On Foguel's answer to Sz.-Nagy's question, Proc. Amer. Math. Soc. 15 (1964), 791-793. MR 0165363 (29:2647)
  • [6] J. H. Hedlund, Strongly strictly cyclic weighted shifts, Proc Amer. Math. Soc. 57 (1976), 119-121. MR 0402530 (53:6349)
  • [7] D. A. Herrero, Transitive operator algebras containing a subalgebra of finite strict multiplicity, Rev. Un. Mat. Argentina 26 (1972), 77-83. MR 0336387 (49:1162)
  • [8] -, Operator algebras of finite strict multiplicity, Indiana Math. J. 22 (1972), 13-24. MR 0315468 (47:4017)
  • [9] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 0089373 (19:664d)
  • [10] E. Kerlin and A. L. Lambert, Strictly cyclic shifts on Ip, Acta Sci. Math. (Szeged) 35 (1973), 87-94. MR 0328658 (48:7000)
  • [11] A. L. Lambert, Strictly cyclic operator algebras, Dissertation, Univ. of Michigan, 1970.
  • [12] -, Strictly cyclic weighted shifts, Proc. Amer. Math. Soc. 29 (1971), 331-336. MR 0275213 (43:970)
  • [13] -, Strictly cyclic operator algebras, Pacific J. Math. 39 (1971), 717-726. MR 0310664 (46:9762)
  • [14] A. L. Lambert and T. R. Turner, The double commutant of invertibility weighted shifts, Duke Math. J. 39 (1972), 385-389. MR 0310683 (46:9781)
  • [15] H. Radjavi and P. M. Rosenthal, Invariant subspaces, Springer-Verlag, Berlin and New York, 1973. MR 0367682 (51:3924)
  • [16] B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Publ. Math. Debrecen 4 (1959), 82-92. MR 0108722 (21:7436)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A65

Retrieve articles in all journals with MSC: 47A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0507322-2
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society