A functional characterization of primitive base

Author:
Howard H. Wicke

Journal:
Proc. Amer. Math. Soc. **72** (1978), 355-361

MSC:
Primary 54E99; Secondary 54A99

DOI:
https://doi.org/10.1090/S0002-9939-1978-0507338-6

MathSciNet review:
507338

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: All published formulations of the concept of primitive base involve the concept of well ordering in a prominent way. This paper presents various conditions, not involving well ordering, on a function such that if a space has a function satisfying one of these conditions, then it may be proved (using the axiom of choice) that it has a primitive base. These conditions are used in some characterizations of base of countable order. Examples show nonequivalence of the conditions with primitive base if the axiom of choice does not hold.

**[1]**Dennis K. Burke and David J. Lutzer,*Recent advances in the theory of generalized metric spaces*, Topology (Proc. Ninth Annual Spring Topology Conf., Memphis State Univ., Memphis, Tenn., 1975) Dekker, New York, 1976, pp. 1–70. Lecture Notes in Pure and Appl. Math., Vol. 24. MR**0428293****[2]**Peter Fletcher and William F. Lindgren,*𝜃-spaces*, Gen. Topology Appl.**9**(1978), no. 2, 139–153. MR**0500849****[3]**Robert W. Heath,*Arc-wise connectedness in semi-metric spaces*, Pacific J. Math.**12**(1962), 1301–1319. MR**0166759****[4]**R. W. Heath,*On open mappings and certain spaces satisfying the first countability axiom*, Fund. Math.**57**(1965), 91–96. MR**0179763**, https://doi.org/10.4064/fm-57-1-91-96**[5]**R. E. Hodel,*Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points*, Duke Math. J.**39**(1972), 253–263. MR**0293580****[6]**Howard H. Wicke,*Open continuous images of certain kinds of 𝑀-spaces and completeness of mappings and spaces*, General Topology and Appl.**1**(1971), no. 1, 85–100. MR**0282348****[7]**H. H. Wicke and J. M. Worrell Jr.,*Primitive structures in general topology*, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 581–599. MR**0375242****[8]**H. H. Wicke and J. M. Worrell Jr.,*A characterization of primitive bases*, Proc. Amer. Math. Soc.**50**(1975), 443–450. MR**0425922**, https://doi.org/10.1090/S0002-9939-1975-0425922-2**[9]**H. H. Wicke and J. M. Worrell Jr.,*A characterization of spaces having bases of countable order in terms of primitive bases*, Canad. J. Math.**27**(1975), no. 5, 1100–1109. MR**0385817**, https://doi.org/10.4153/CJM-1975-115-1**[10]**-,*The hereditary Lindelöf property, primitive structures, and separable metrizability*, Notices Amer. Math. Soc.**22**(1975), A-425, Abstract 723-G10.**[11]**H. H. Wicke and J. M. Worrell Jr.,*Spaces which are scattered with respect to collections of sets*, Proceedings of the 1977 Topology Conference (Louisiana State Univ., Baton Rouge, La., 1977), I, 1977, pp. 281–307 (1978). MR**540612**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54E99,
54A99

Retrieve articles in all journals with MSC: 54E99, 54A99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0507338-6

Keywords:
Primitive base,
base of countable order,
-space,
first countable function,
well ordering

Article copyright:
© Copyright 1978
American Mathematical Society