Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Differentiable pseudo-free circle actions on homotopy spheres


Author: Chao Chu Liang
Journal: Proc. Amer. Math. Soc. 72 (1978), 362-364
MSC: Primary 57S15; Secondary 57S25
DOI: https://doi.org/10.1090/S0002-9939-1978-0507339-8
MathSciNet review: 507339
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G denote the circle group, $ \varphi $ a differentiable pseudo-free G-action of type $ ({p_1}, \ldots ,{p_k})$ on a homotopy sphere $ {\Sigma ^{2n + 1}}$, and X the vector field induced by $ \varphi $. If w is a G-invariant 1-form satisfying $ w(X) = 1$, then we will prove that $ {\smallint _\Sigma }w \wedge {(dw)^n} = \pm {({p_1}{p_2} \cdots {p_k})^{ - 1}}$.


References [Enhancements On Off] (What's this?)

  • [1] W. L. Baily, The decomposition theorem for V-manifolds, Amer. J. Math. 78 (1956), 862-888. MR 0100103 (20:6537)
  • [2] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. 68 (1958), 721-734. MR 0112160 (22:3015)
  • [3] P. E. Conner and E. E. Floyd, Orbit spaces of circle groups of transformation, Ann. of Math. 67 (1958), 90-98. MR 0092922 (19:1180f)
  • [4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Wiley, New York, 1969. MR 1393941 (97c:53001b)
  • [5] D. Montgomery and C. T. Yang, Homotopy equivalence and differentiable pseudo-free circle actions on homotopy spheres, Michigan Math. J. 20 (1973), 145-159. MR 0324719 (48:3069)
  • [6] -, Differentiable pseudo-free circle actions on homotopy seven spheres (Proc. Second Conference Complex Transformation Groups, Amherst, 1971), Lecture Notes in Math., vol. 298, Springer-Verlag, Berlin and New York, 1972, pp. 41-101. MR 0362383 (50:14825)
  • [7] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359-365. MR 0079769 (18:144a)
  • [8] -, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464-492. MR 0095520 (20:2022)
  • [9] A. Weinstein, Symplectic V-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds, Comm. Pure Appl. Math. 30 (1977), 265-271. MR 0455019 (56:13260)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57S15, 57S25

Retrieve articles in all journals with MSC: 57S15, 57S25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0507339-8
Keywords: Differentiable pseudo-free actions, V-manifolds, characteristic classes
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society