Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Open book decompositions of $ 3$-manifolds


Author: Robert Myers
Journal: Proc. Amer. Math. Soc. 72 (1978), 397-402
MSC: Primary 57M25; Secondary 57N10
DOI: https://doi.org/10.1090/S0002-9939-1978-0507346-5
MathSciNet review: 507346
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every closed, orientable 3-manifold has an open book decomposition with connected binding. We then give some applications of this result.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95.
  • [2] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be $ {S^3}$, Ann. of Math. 68 (1958), 17-37. MR 0095471 (20:1973)
  • [3] J. S. Birman, Braids, links, and mapping class groups, Ann. of Math. Studies, No. 82, Princeton, N.J., 1974. MR 0375281 (51:11477)
  • [4] R. H. Crowell and R. H. Fox, Introduction to knot theory, Ginn, Boston, Mass., 1963. MR 0146828 (26:4348)
  • [5] R. H. Fox, Covering spaces with singularities, Algebraic Geometry and Topology, Princeton Univ. Press, Princeton, N.J., 1957, pp. 243-257. MR 0123298 (23:A626)
  • [6] D. L. Goldsmith, Symmetric fibered links, Knots, Groups, and 3-Manifolds, Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 3-23. MR 0380766 (52:1663)
  • [7] F. González-Acuña, 3-dimensional open books, Lectures, Univ. of Iowa Topology Seminar, 1974/75.
  • [8] H. M. Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of $ {S^3}$, Bull. Amer. Math. Soc. 80 (1974), 1243-1244. MR 0350719 (50:3211)
  • [9] -, Three-fold branched coverings of $ {S^3}$, Amer. J. Math. 98 (1976), 989-998. MR 0425968 (54:13917)
  • [10] H. B. Lawson, Foliations, Bull. Amer. Math. Soc. 80 (1974), 369-418. MR 0343289 (49:8031)
  • [11] J. M. Montesinos, A representation of closed orientable 3-manifolds as 3-fold branched coverings of $ {S^3}$, Bull. Amer. Math. Soc. 80 (1974), 845-846. MR 0358784 (50:11243)
  • [12] -, Three-manifolds as 3-fold branched covers of $ {S^3}$, Quart. J. Math. Oxford Ser. (2) 27 (1976), 85-94. MR 0394630 (52:15431)
  • [13] R. Myers, Open book decompositions of 3-manifolds, Notices Amer. Math. Soc. 22 (1975), A-651.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25, 57N10

Retrieve articles in all journals with MSC: 57M25, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0507346-5
Keywords: Open book decomposition, 3-manifold, fibered knot, branched covering space, braid, foliation
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society