ON FINITE SIMPLE GROUPS WITH A SELF-CENTRALIZATION SYSTEM OF TYPE (2(n))

PAMELA A. FERGUSON

Abstract. Let G denote a simple group with a self-centralization system of type $(2(n))$, where $n > 3$. Let X_i denote an exceptional character of G, then $X_i(1) = kn + 2e$ where $e = \pm 1$. It is known that

$$|G| = nX_i(1)(X_i(1) - e)(ln + 1)$$

where l is a nonnegative integer. In this paper G is classified if $l = 0$, $e = 1$ and $X_i(1)$ is odd.

Let G be a finite simple group, a proper subgroup A of G is called a CC subgroup if $C_G(a) \subseteq A$ for all $a \in A$. If $|N_G(A)|/|A| = 2$ and $|A| = n$, then G is said to have a self-centralization system of type $(2(n))$. The classification of simple groups with a self-centralization system of type $(2(n))$ is still incomplete. If $n = 3$, then $G \cong PSL(2, q)$, $q = 5$ or 7 [2]. If $n > 3$, it is well known [5] that G has $(n - 1)/2$ irreducible characters X_i, and one nonprincipal irreducible character Y such that $X_i(1) = kn + 2e$, $Y(1) = kn + \epsilon$ where $\epsilon = \pm 1$ and $|G| = nX_i(1)Y(1)(ln + 1)$ where l is a nonnegative integer. In all the known simple groups of type $(2(n))$, $l = 0$ [5]. In this paper we classify all simple groups G with a self-centralization system of type $(2(n))$ where $l = 0$, $\epsilon = 1$, and $X_i(1)$ is odd. In particular we prove the following:

Theorem A. Let G be a finite simple group with a self-centralization system of type $(2(n))$ where $n > 5$. Let A be a subgroup of order n and let X_i be an exceptional character of G associated with $N(A)$. Assume $X_i(1) = kn + 2$, $X_i(1)$ is odd and $|G| = n(kn + 2)(kn + 1)$, then G is isomorphic to $Sz(q)$ or $PSL(2, 2r)$.

Let $G \in Hypothesis A$ if G satisfies the hypothesis of Theorem A but not the conclusion. Let τ be an involution in $N(A)$, Theorem 5.1 [5] implies G has one class of involutions. If S is a set, let $|S|$ denote the number of elements in S.

Assume $G \in Hypothesis A$.

If $|C_G(\tau)| = 2^r$, then [6] implies either G satisfies Theorem A, $G \cong PSL(3, 4)$ or $G \cong PSL(2, q)$ where q is odd, $n = (q + 1)/2$ or $(q - 1)/2$ where n is odd. However $X_i(1)$ is even for $PSL(3, 4)$ or $PSL(2, q)$, q odd. Let G_2 be a Sylow 2 subgroup of G; if G_2 is abelian, then [7] again implies a
contradiction. Hence, \(G \in \text{Hypothesis A} \) implies \(|C_G(\tau)| \neq |G_2|\) and \(G_2 \) is not abelian.

If \(z \in C_G(\tau)^g \), let \(F_z = \{ \tau^g \mid \tau \in C_G(z) \} \).

Lemma 1. Assume \(G \in \text{Hypothesis A} \); then there is an element \(x \in C_G(\tau)^g \) such that \(x \) has odd order and \(F_x \neq F_z \).

Proof. Assume \(x \) an element of odd order in \(C_G(\tau)^g \) implies \(F_x = F_z \). \(G \in \text{Hypothesis A} \) implies \(|F_x| \neq 1\). Let \(\tau_2 \in F_x \setminus \{ \tau \} \); then \(\tau_2 = \tau^g \) for some \(g \in G \). Now \(\tau_2 \in F_x \) implies \(x \in C_G(\tau_2) = (C_G(\tau))^g \). Hence \(x = y^g \) where \(y \) has odd order and \(y \in C_G(\tau)^g \). Therefore \(F_x = F_yg = (F_y)^g = (F_z)^g = F_{\tau_2} \). Hence \(F_z = F_{\tau_2} \). Let \(\langle F_z \rangle \) be the group generated by \(F_z \), then \(F_{\tau_2} = F_z \) implies \(\langle F_z \rangle \) is an abelian 2-group. Thus \(\Omega_1(G_2) \) is abelian and Goldschmidt \[3\] implies \(G \notin \text{Hypothesis A} \).

Proof of Theorem A. We will assume \(G \in \text{Hypothesis A} \) and obtain a contradiction. Let \(Y \) be the nonprincipal nonexceptional character associated with \(N(A) \). Since \(|G_2| < Y(1)\), \(Y(\tau) = 0 \) and Lemma 6 of \[4\] implies \(|C_G(\tau)| = Y(1)\). Theorem 17.4 \[1\] implies \(Y(z) = 0 \) for \(z \in C_G(\tau)^g \). Since \(e = 1 \), Lemma 4 \[4\] implies \(X_i(z) = 1 \) for \(z \in C_G(\tau)^g \), and \(i = 1, \ldots, (n - 1)/2 = t \).

Let \(T \) denote the principal character of \(C_G(\tau) \) and let \(T^* \) denote the character of \(G \) induced by \(T \). Let \(1_G \) denote the principal character of \(G \). Frobenius Reciprocity now implies \((T^*, X_i) = 2 \) for \(i = 1, \ldots, t \), and \((T^*, Y) = (T^*, 1_G) = 1 \). Now \(T^*(1) = |G|/Y(1) = nX_1(1) \) and \(\Sigma_{i=2}^t 2X_i(1) + Y(1) + 1_G(1) = nX_1(1) \) imply \(T^* = \Sigma_{i=1}^t 2X_i + Y + 1_G \). Hence, \(z \in C_G(\tau)^g \) implies \(T^*(z) = n \).

If \(z \in C_G(\tau)^g \), then \(T^*(z) \) is the number of involutions in \(C_G(z) \); hence \(|F_z| = n\). Let \(x \in C_G(\tau)^g \) where \(x \) has odd order and let \(z = x\tau \). Now \(F_z = F_x \cap F_{\tau} \). Hence \(|F_z| = n = |F_{\tau}| = |F_x| \) implies \(F_{\tau} = F_x = F_z \). This contradicts Lemma 1.

References

Department of Mathematics, University of Miami, Coral Gables, Florida 33124