Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On finite simple groups with a self-centralization system of type $ (2(n))$


Author: Pamela A. Ferguson
Journal: Proc. Amer. Math. Soc. 72 (1978), 443-444
MSC: Primary 20D06
DOI: https://doi.org/10.1090/S0002-9939-1978-0509231-1
MathSciNet review: 509231
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G denote a simple group with a self-centralization system of type $ (2(n))$, where $ n > 3$. Let $ {X_1}$ denote an exceptional character of G, then $ {X_1}(1) = kn + 2\varepsilon $ where $ \varepsilon = \pm 1$. It is known that

$\displaystyle \vert G\vert = nX_{1}(1)(X_{1}(1)-\varepsilon)(ln + 1) $

where l is a nonnegative integer. In this paper G is classified if $ l = 0,\varepsilon = 1$ and $ {X_1}(1)$ is odd.

References [Enhancements On Off] (What's this?)

  • [1] W. Feit, Characters of finite groups, Benjamin, New York, 1967. MR 0219636 (36:2715)
  • [2] W. Feit and J. G. Thompson, Finite groups which contain a self-centralizing subgroup of order 3, Nagoya Math. J. 21 (1962), 185-197. MR 0142623 (26:192)
  • [3] D. Goldschmidt, 2-fusion in finite groups, Ann. of Math. (2) 99 (1974), 70-117. MR 0335627 (49:407)
  • [4] K. Harada, A characterization of groups $ F(2,q)$, Illinois J. Math. 11 (1967), 647-659. MR 0218443 (36:1529)
  • [5] G. Higman, Odd characterizations of finite simple groups, Lecture Notes, Univ. Michigan, Ann Arbor, Mich., 1968.
  • [6] M. Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc. 99 (1961), 425-470. MR 0131459 (24:A1309)
  • [7] J. Walther, The characterization of finite groups with abelian 2-subgroups, Ann. of Math. (2) 89 (1969), 405-514. MR 0249504 (40:2749)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D06

Retrieve articles in all journals with MSC: 20D06


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0509231-1
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society