Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Korovkin-type theorem in locally convex spaces


Author: Hans-O. Flösser
Journal: Proc. Amer. Math. Soc. 72 (1978), 456-460
MSC: Primary 46A40; Secondary 46E99
DOI: https://doi.org/10.1090/S0002-9939-1978-0509234-7
MathSciNet review: 509234
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let E be a locally convex M-space, $ \emptyset \ne M$ a subset. The universal Korovkin-closure of M as well as the sequentially or stationary defined Korovkin-closures coincide with the space of M-harmonic elements and with the uniqueness closure of M.


References [Enhancements On Off] (What's this?)

  • [1] H. Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier (Grenoble) 23 (1973), 245-260. MR 0358178 (50:10643)
  • [2] H. Berens and G. G. Lorentz, Theorems of Korovkin type for positive linear operators on Banach lattices, Approximation Theory (G. G. Lorentz, ed.), Academic Press, New York, 1973. MR 0340913 (49:5663)
  • [3] K.-D. Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I, J. Reine Angew. Math. 259 (1973), 186-210. MR 0318871 (47:7417)
  • [4] K. Donner, Korovkin theorems for positive linear operators, J. Approximation Theory 13 (1975), 443-450. MR 0370008 (51:6237)
  • [5] C. Portenier, Espaces de Riesz, espaces de fonctions et espaces de sections, Comment. Math. Helv. 46 (1971), 289-313. MR 0291764 (45:855)
  • [6] H. H. Schaefer, Topological vector spaces, Springer-Verlag, Berlin and New York, 1974. MR 0342978 (49:7722)
  • [7] -, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974. MR 0423039 (54:11023)
  • [8] M. Wolff, Über die Korovkinhülle von Teilmangen in lokalkonvexen Vektorverbänden, Math. Ann. 213 (1975), 97-108. MR 0388037 (52:8874)
  • [9] -, On the universal Korovkin closure of subsets in vector lattices, J. Approximation Theory 22 (1978), 243-253. MR 0470573 (57:10323)
  • [10] -, On the theory of approximation by positive operators in vector lattices, Functional Analysis: Surveys and Recent Results (K.-D. Bierstedt, B. Fuchssteiner, eds.), North-Holland Mathematics Studies, vol. 27, Amsterdam, 1977. MR 0467112 (57:6979)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A40, 46E99

Retrieve articles in all journals with MSC: 46A40, 46E99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0509234-7
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society