ON THE LOCAL SPECTRA OF SEMINORMAL OPERATORS

KEVIN F. CLANCEY

ABSTRACT. Two theorems on the local spectra of seminormal operators are deduced. In the first theorem it is shown that when \(T \) is hyponormal any solution of the equation \((T - \lambda)x(\lambda) = x\) on an open set in the plane is necessarily analytic. The second theorem establishes the existence of vectors with small local spectra for a cohyponormal operator with a finite rank self-commutator.

Let \(T \) be an operator on a Hilbert space \(\mathcal{H} \). For \(x \) a vector in \(\mathcal{H} \) the local resolvent \((T - \lambda)^{-1}x\) is analytic on the resolvent set \(\rho(T) \). In case any two analytic extensions of \((T - \lambda)^{-1}x\) agree on their common domain, then the operator \(T \) is said to have the single valued extension property. When \(T \) has the single valued extension property the domain of the maximal analytic continuation \(\tilde{x} \) of the local resolvent is denoted by \(\rho_T(x) \). The complementary set \(\sigma_T(x) = \mathcal{C} \setminus \rho_T(x) \) is called the local spectrum of \(x \). If \(T \) has the single valued extension property, then for \(\delta \) a closed subset in the plane \(X_T(\delta) \) will denote the linear manifold consisting of vectors \(x \) such that \(\sigma_T(x) \) is contained in \(\delta \).

An operator \(S \) on \(\mathcal{H} \) is called seminormal in case its selfadjoint self-commutator \(D = S*S - SS* \) is semidefinite. In case \(D > 0 \), the operator \(S \) is called hyponormal and when \(D < 0 \), the operator \(S \) is called cohyponormal. There is a marked difference between the local spectral theories for hyponormal and cohyponormal operators. It is known that if \(H \) is hyponormal, then \(H \) has the single valued extension property. Further \(X_H(\delta) \) is closed for all closed \(\delta \subset \mathcal{C} \). This latter result appears in Stampfli [7] with the hypothesis that the spectrum \(\sigma(H) \) consists of continuous spectrum. Radjabalipour [6] has shown that the latter hypothesis on the spectrum of \(H \) is unnecessary. It is apparently unknown (excepting trivial cases where \(H^* \) has eigenvalues) whether \(\delta \) can be chosen so that \(X_H(\delta) \) provides a nontrivial invariant subspace for the operator \(H \). On the other hand when \(C \) is a nonnormal cohyponormal operator with the single valued extension property there are nonzero vectors with local spectra a proper subset of \(\sigma(C) \). Whether \(X_C(\delta) \) is closed for closed \(\delta \subset \mathcal{C} \) is not known. These vectors with small local spectra are provided by a result of Putnam [5] which asserts that any vector in the range of \(CC^* - C^*C \) belongs to the range of \(C - \lambda \), for all \(\lambda \in \mathcal{C} \). As we shall see below there are no nonzero vectors in the range of \(H - \lambda \), for all

1This work was supported in part by a grant from the National Science Foundation.
\(\lambda \in \mathbb{C} \), when \(H \) is a hyponormal operator.

Let \(T \) be an operator on \(\mathcal{K} \) and \(\delta \subset \mathbb{C} \) closed. The notation

\[
Z_T(\delta) = \bigcap_{\lambda \notin \delta} (T - \lambda)\mathcal{K}
\]

will be employed.

Theorem 1. Let \(H \) be a hyponormal operator on \(\mathcal{K} \) and \(\delta \subset \mathbb{C} \) closed. Then

\[
Z_H(\delta) = X_H(\delta).
\]

The above result answers a question of Radjabalipour [6]. Theorem 1 improves a result of Stampfli and Wadhwa [8]. The possibility that \(H \) be a normal operator is not ruled out. For the case where \(H \) is normal the result in Theorem 1 appears in Putnam [6] and implicitly in [2].

An immediate corollary is the following.

Corollary. Let \(H \) be hyponormal. Then \(Z_H(\phi) = (0) \).

Although in the nonnormal cohyponormal case it is possible to find vectors with local spectra a proper subset of the spectrum, it is not easy to control the location of the local spectra. In this direction we establish:

Theorem 2. Let \(C \) be a cohyponormal operator on \(\mathcal{K} \) possessing the single valued extension property and having a finite rank self-commutator. Let \(\Delta \) be an open disc such that \(\Delta \cap \sigma(C) \neq \emptyset \). There exists a vector \(x \) in \(\mathcal{K} \) such that \(\sigma_C(x) \subset \Delta \).

1. **Preliminaries to Theorem 1.** In this section we record lemmas needed for the proof of Theorem 1.

Lemma 1. Let \(T \) be an operator without point spectra and \(x \in \mathcal{K} \). Let \(\Delta_x \) be the set of \(\lambda \) in \(\mathbb{C} \) for which there is a vector \(x(\lambda) \) satisfying \((T - \lambda)x(\lambda) = x \). Then \(||x(\lambda)|| \) is a lower semicontinuous function on \(\Delta_x \).

Proof. Write \(T - \lambda \) as \(T_\lambda \). Let \(T_\lambda \) be the polar factorization of \(T_\lambda \). The operator \(U_\lambda \) is coisometric with null space the same as \(T_\lambda \) and \(P_\lambda = (T_\lambda T_\lambda^*)^{1/2} \). Let \(P_\lambda = \int t \, dE^\lambda(t) \) denote the spectral resolution of \(P_\lambda \). It is easy to verify that if \((T - \lambda)x(\lambda) = x \), then

\[
||x(\lambda)||^2 = \int t^{-2}d||E^\lambda(t)x||^2.
\]

This last identity and in fact the lower semicontinuity of \(||x(\lambda)|| \) follow from the equalities

\[
\int t^{-2}d||E^\lambda(t)x||^2 = \lim_{\mu \to 0^+} \int (t + \mu)^{-2}d||E^\lambda(t)x||^2 = \lim_{\mu \to 0^+} ((P_\lambda + \mu)^{-2}x, x).
\]

The lower semicontinuity is implied by the continuity of \(((P_\lambda + \mu)^{-2}x, x) \) as a function of \(\lambda \), when \(\mu > 0 \) is fixed. This ends the proof.

The following lemma appears in Stampfli [7, Theorem 1]. Actually as stated
in Stampfli one requires the spectrum of T to consist of continuous spectrum. This hypothesis is removed in Radjabalipour [6].

Lemma 2. Let H be hyponormal without eigenvalues and let $x \in \mathcal{H}$. Then

$$\|x(\lambda)\| \leq \frac{\|x\|}{\text{dist}(\lambda, \sigma_H(x))}.$$

The final lemma which we need is stated in Radjabalipour [6, Theorem 1] (see, also Stampfli and Wadhwa [8]).

Lemma 3. Let H be a hyponormal operator without eigenvalues and $\delta \subset \mathbb{C}$ be closed. Suppose there is a bounded function $x(\lambda)$ satisfying $(H - \lambda)x(\lambda) = x$, $\lambda \notin \delta$. Then $x(\lambda)$ is analytic on $\mathbb{C} \setminus \delta$.

2. Proof of Theorem 1. In the proof of the theorem it can be assumed that the operator H has no eigenvalues. Let Δ be a closed disc. Assume that $x \in H$ satisfies $x \in \bigcap_{\lambda \in \Delta}(H - \lambda)\mathcal{H}$. For $\lambda \in \Delta$, the vector $x(\lambda)$ will be assumed to satisfy $(H - \lambda)x(\lambda) = x$. It will be shown that the interior Δ^0 of Δ is contained in $\rho_H(x)$. The theorem follows easily from this last statement.

Suppose to the contrary that $\Delta^0 \cap \sigma_H(x) \neq \emptyset$.

For $n = 1, 2, \ldots$, set $F_n = \{\lambda \in \Delta \cap \sigma_H(x): \|x(\lambda)\| < n\}$. It follows from the lower semicontinuity of $\|x(\lambda)\|$ (Lemma 1) that F_n is closed and by hypothesis $\bigcup_{n=1}^{\infty} F_n = \Delta \cap \sigma_H(x)$. The Baire Category Theorem implies that for some m the set $F_m \cap \Delta^0$ has interior in the relative topology on $\Delta \cap \sigma_H(x)$. This means there is an open disc $D \subset \Delta^0$ with center in $\sigma_H(x)$ so that $\|x(\lambda)\| < m$, for all $\lambda \in D \cap \sigma_H(x)$. Let D' be the disc with same center as D and radius equal to one-half the radius of D. Let $\lambda_0 \in D' \cap \rho_H(x)$ (if such a λ_0 exists) and choose γ_0 in $D \cap \sigma_H(x)$ such that $|\lambda_0 - \gamma_0| = \text{dist}(\lambda_0, \sigma_H(x))$. Set $z_0 = x(\gamma_0) = (H - \gamma_0)^{-1}x$. It is easy to see that $\sigma_H(x) = \sigma_H(z_0)$ and for $\lambda \in \rho_H(x)$

$$z(\lambda) = \frac{x(\lambda) - x(\gamma_0)}{\lambda - \gamma_0}$$

satisfies $(H - \lambda)z(\lambda) = z_0$. It follows from Lemma 2 that

$$\|z(\lambda_0)\| = \frac{\|x(\lambda_0) - z_0\|}{|\lambda_0 - \gamma_0|} \leq \frac{\|z_0\|}{\text{dist}(\lambda_0, \sigma_H(z_0))}.$$

Since $\text{dist}(\lambda_0, \sigma_H(z_0)) = \text{dist}(\lambda_0, \sigma_H(x)) = |\lambda_0 - \gamma_0|$, we have $\|x(\lambda_0)\| < 2\|z_0\| < 2m$. In any case $\|x(\lambda)\| < 2m$, for all $\lambda \in D'$, and from Lemma 3 we conclude that $x(\lambda)$ is analytic on D'. This contradicts the assumption that the center of D' belongs to $\sigma_H(x)$ and ends the proof.

3. Proof of Theorem 2. Let C be a cohyponormal operator with the single valued extension property. It will be assumed that the self-commutator of C has finite rank N and we will write $D = CC^* - C^*C = \sum_{i=1}^{N} \langle \cdot, \psi_i \rangle \psi_i$ where ψ_i
is orthogonal to ψ_j for $i \neq j$. Let $\pi_0(C)$ denote the collection of eigenvalues of C. Putnam [5] has shown that there are weakly continuous functions $\tilde{\psi}_i: C \setminus \pi_0(C) \to \mathbb{C}$ such that $(C - z)\tilde{\psi}_i(z) = \psi_i$, $\|\tilde{\psi}_i(z)\| \leq 1$, $i = 1, \ldots, N$, $z \in C \setminus \pi_0(C)$. Below it will be shown that if Δ is a disc with $\Delta \cap [\sigma(C) \setminus \pi_0(C)] \neq \emptyset$, then one of the functions $\tilde{\psi}_1, \ldots, \tilde{\psi}_N$ fails to be analytic on Δ.

In the remainder of this section it will be assumed that the operator C is completely nonnormal. This means that there are no nontrivial reducing subspaces of \mathcal{H} on which C is a normal operator. This ensures (among other things) that $\pi_0(C^*) = \emptyset$. Let $z \in \sigma(C) \setminus \pi_0(C)$ and let $C - z = W_z P_z^{1/2}$ be the polar factorization of $C - z$; here, $P_z = (C - z)^*(C - z)$ and W_z is unitary. It is easy to verify that $W_z P_z = (P_z + D)W_z$.

A result of Krein [3] asserts that existence of a measurable function δ_z with compact support in $[0, \infty)$ satisfying $0 < \delta_z < N$ such that

$$\det\left[I_N - \left[\left((P_z + D - \lambda)^{-1}\psi_i, \psi_j\right)\right]_{N \times N}\right] = \exp\left\{-\int_0^\infty \frac{\delta_z(t)}{t - \lambda} \, dt\right\},$$

(1)

for all λ such that $\text{Re} \lambda \notin [0, \infty)$. In the preceding equation I_N denotes the $N \times N$ identity matrix and $\left[\left((P_z + D - \lambda)^{-1}\psi_i, \psi_j\right)\right]_{N \times N}$ is the $N \times N$ matrix with ij entry $((P_z + D - \lambda)^{-1}\psi_i, \psi_j)$.

We would like to take the limit in equation (1) as $\lambda \to 0^-$. Our argument proceeds as in Putnam [5]. One notes for $k = 1, \ldots, N$ and $\lambda < 0$

$$\left\|(P_z + D - \lambda)^{-1/2}\psi_k\right\|^2 = \left\|(P_z + D - \lambda)^{-1}\psi_k, \psi_k\right\|^2$$

$$\leq (D - \lambda)^{-1}\psi_k, \psi_k) = \frac{\|\psi_k\|^2}{\|\psi_k\|^2 - \lambda} < 1.$$

It follows that ψ_k belongs to the domain of $(P_z + D)^{-1/2}$ and

$$\lim_{\lambda \to 0^-} (P_z + D - \lambda)^{-1/2}\psi_k = (P_z + D)^{-1/2}\psi_k, \quad k = 1, \ldots, N.$$

Taking the limit as $\lambda \to 0^-$ in equation (1) one obtains

$$\det\left[I_N - \left[\left((P_z + D)^{-1/2}\psi_i, (P_z + D)^{-1/2}\psi_j\right)\right]_{N \times N}\right] = \exp\left\{-\int_0^\infty \frac{\delta_z(t)}{t} \, dt\right\}.$$

Using the facts that $W_z W_z^* = I$ and $W_z^*(P_z + D)^{-1/2}\psi_k = \tilde{\psi}_k(z)$ we can write

$$\det\left[I_N - \left[\left(\tilde{\psi}_i(z), \tilde{\psi}_j(z)\right)\right]_{N \times N}\right] = \exp\left[-\int_0^\infty \frac{\delta_z(t)}{t} \, dt\right].$$

(2)

Carey and Pincus [1] have identified the function δ_z in the following manner. There exists an integrable function G^δ_z on the cylinder $[0, \infty) \times T$ such that
ON THE LOCAL SPECTRA OF SEMINORMAL OPERATORS

\[
\det \left[I_N + \left(W_z (P_z + D - \lambda)^{-1}(W_z - \tau)^{-1}\psi_i, \psi_j \right)_{N \times N} \right] \\
= \exp \frac{1}{2\pi i} \int_0^\infty \int_0^{2\pi} G_z^P (t, e^{i\theta}) \frac{de^{i\theta}}{e^{i\theta} - \tau} \frac{dt}{t - \lambda}
\]

for all \(\lambda \in [0, \infty) \) and \(|\tau| \neq 1\). The identity

\[
\delta_z (t) = \frac{1}{2\pi} \int_0^{2\pi} G_z^P (t, e^{i\theta}) d\theta \quad \text{a.e.} \quad (3)
\]

is established in [1]. The function \(G_z^P \) is referred to as the polar principal function for the operator \(C_z \). There is a second principal function \(G \) defined for the operator \(C \). Write \(C = U - iV \) where \(U, V \) are selfadjoint. There exists [1] an integrable function \(G \) on \(\mathbb{R}^2 \) such that

\[
\det \left[I_N + \left((V - v)^{-1}(U - u)^{-1}\psi_i, \psi_j \right)_{N \times N} \right] \\
= \exp \int \int G (\nu, \mu) \frac{d\nu}{\nu - v} \frac{d\mu}{\mu - u} \cdot
\]

The basic result relating \(G \) and \(G_z^P \) is the identity

\[
G_z^P (t, e^{i\theta}) = G (\nu, \mu) \quad \text{a.e.} \quad (4)
\]

where \(\mu + iv - \bar{z} = \sqrt{t} e^{i\theta} \) [1].

Then

\[
\int_0^\infty \frac{\delta_z (t)}{t} \ dt = \frac{1}{2\pi} \int_0^\infty \int_0^{2\pi} G_z^P (t, e^{i\theta}) \ dt \ d\theta \\\n= \frac{1}{\pi} \int \int \frac{G (\nu, \mu)}{|\mu + iv - \bar{z}|^2} \ d\mu \ d\nu.
\]

There is a subset \(B \subset A = \{ z = \mu + iv: G (\nu, \mu) \neq 0 \} \) such that the last integral is infinite at every \(\bar{z} \in B \), moreover the planar measure of \(A \setminus B \) is zero.

It is known that the essential closure of \(A \) is \(\sigma (C^*) \). This implies the essential closure of \(B \) is \(\sigma (C^*) \). Thus whenever \(\Delta \) is a disc intersecting \(\sigma (C) \) there are points in \(\Delta \) at which \(\int_0^\infty (\delta_z (t)/t) \ dt = \infty \). Consequently, if \(\Delta \) is a disc intersecting \(\sigma (C) \setminus \pi_0 (C) \) there are points \(z \) in \(\Delta \) with

\[
\det \left[I_N - \left[(\tilde{\psi}_i (z), \tilde{\psi}_j (z)) \right]_{N \times N} \right] = 0. \quad (5)
\]

It will be shown that the matrix \(R (z) = [(\tilde{\psi}_i (z), \tilde{\psi}_j (z))] \) satisfies \(0 < R (z) < I_N \). Note first

\[
\tilde{\psi}_i (z) = W^*_z (P_z + D)^{-1/2} \psi_i \quad (1 < i < N).
\]

Therefore
\[
\left(\hat{\psi}_i(z), \hat{\psi}_j(z) \right) = \left((P_z + D)^{-1/2}\psi_i, (P_z + D)^{-1/2}\psi_j \right)
\]
\[
= \lim_{\lambda \to 0} \left((P_z + D - \lambda)^{-1/2}\psi_i, (P_z + D - \lambda)^{-1/2}\psi_j \right)
\]
\[
= \lim_{\lambda \to 0} \left((P_z + D - \lambda)^{-1}\psi_i, \psi_j \right).
\]

The result will follow when it is established that
\[
R(z, \lambda) = \left[\left((P_z + D - \lambda)^{-1}\psi_i, \psi_j \right) \right] < I_N.
\]

Let \(x = [x_1, \ldots, x_N] \in C^N \). Then
\[
\langle R(z, \lambda)x, x \rangle = \left((P_z + D - \lambda)^{-1}\omega, \omega \right)
\]
where \(\omega = \sum_{i=1}^{N} \overline{x_i}\psi_i \). Since \((P_z + D - \lambda)^{-1} < (D - \lambda)^{-1} \) we have
\[
\langle R(z, \lambda)x, x \rangle < \left((D - \lambda)^{-1}\omega, \omega \right).
\]

Using the fact that \(D = \sum_{i=1}^{N} \psi_i \otimes \psi_i \) with \(\psi_i \) orthogonal one computes
\[
(D - \lambda)^{-1}\omega = \sum_{i=1}^{N} \frac{\overline{x_i}}{\|\psi_i\|^2 - \lambda} \psi_i.
\]

Therefore
\[
\langle R(z, \lambda)x, x \rangle < \sum_{i=1}^{N} \frac{|x_i|^2\|\psi_i\|^2}{\|\psi_i\|^2 - \lambda} \leq \sum_{i=1}^{N} |x_i|^2.
\]

This shows \(R(z, \lambda) < I_N \) and the estimate \(R(z) < I_N \) follows.

Note that if \(e_1, \ldots, e_N \) are orthonormal in \(\mathcal{K} \), then with \(A(z) = \sum_{i=1}^{N} (f, e_i)\hat{\psi}_i(z) \), the matrix \(R(z) \) is (unitarily equivalent to) the product \(A^*(z)A(z) \).

Suppose now that \(\Delta \cap [\sigma(C) \setminus \pi_0(C)] = \emptyset \) and \(\hat{\psi}_1, \ldots, \hat{\psi}_N \) are analytic on \(\Delta \). Then from (5) it follows that the norm of \(A(z) \) is achieved at \(z_0 \in \Delta \). This means for some nonzero \(f \),
\[
\|A(z_0)f\| = 1 = \max_{z \in \Delta} \|A(z)\|.
\]

It follows easily from the maximum modulus theorem that \(A(z)f \) is constant on \(\Delta \).

This yields \(\sum_{i=1}^{N} (f, e_i)\hat{\psi}_i(z) \) is a constant vector \(g \) on \(\Delta \). Let \(h = \sum_{i=1}^{N} (f, e_i)\hat{\psi}_i \). Then \((C - z)g = h (z \in \Delta) \) which is impossible. We conclude that one of \(\hat{\psi}_1, \ldots, \hat{\psi}_N \) is not analytic on \(\Delta \).

The proof of Theorem 2 can now be completed as follows. Let \(\Delta \cap \sigma(C) \neq \emptyset \). If \(\lambda \in \Delta \cap \pi_0(C) \), then any eigenvector \(f_\lambda \) associated with \(\lambda \) satisfies \(\sigma_C(f_\lambda) = \{\lambda\} \subset \Delta \). If no such \(\lambda \) exists then one of the weakly continuous functions \(\hat{\psi}_1, \ldots, \hat{\psi}_N \) say \(\hat{\psi}_\varphi \) fails to be analytic on \(\Delta \). This means that for some simple closed curve \(\Gamma \subset \Delta \), \(\varphi = \int_{\Gamma} \hat{\psi}_\varphi(x) \) does not exist. As in Stampfli [7] one shows \(\sigma_C(\varphi) \subset \Delta \). This ends the proof of Theorem 2.
References

Department of Mathematics, University of Georgia, Athens, Georgia 30602